The safe and effective delivery of anticancer agents to diseased tissues is one of the significant challenges in cancer therapy. Conventional anticancer agents are generally cytotoxins with poor pharmacokinetics and bioavailability. Nanocarriers are nanosized particles, a few of which have received clinical approval, which increase the selectivity of anticancer drugs and genes transport to tumors. They are small enough to extravasate into solid tumors where they slowly release their therapeutic load by passive leakage or by biodegradation. Using smart nanocarriers, the rate of release of the entrapped therapeutic(s) can be increased, and greater exposure of the tumor cells to the therapeutics can be achieved when the nanocarriers are exposed to certain internally (enzymes, pH and temperature) or externally applied (light, magnetic field, and ultrasound) stimuli that trigger the release of their load in a safe and controlled manner, spatially and temporally. This review gives a comprehensive overview of recent research findings on the different types of stimuliresponsive nanocarriers and their application in cancer treatment, with a particular focus on ultrasound.
The functionalization of liposomes with monoclonal antibodies is a potential strategy to increase the specificity of liposomes and reduce the side-effects associated with chemotherapeutic agents. The active targeting of the Human Epidermal growth factor Receptor 2 (HER2), which is overexpressed in HER2 positive breast cancer cells, can be achieved by coating liposomes with an anti-HER2 monoclonal antibody. In this study, we synthesized calcein and Doxorubicin-loaded immunoliposomes functionalized with the monoclonal antibody Trastuzumab (TRA). Both liposomes were characterized for their size, phospholipid content and antibody conjugation. Exposing the liposomes to low-frequency ultrasound (LFUS) triggered drug release which increased with the increase in power density. Trastuzumab conjugation resulted in enhancing the sensitivity of the liposomes to LFUS. Compared to the control liposomes, TRA-liposomes showed higher cellular toxicity and higher drug uptake by the HER2 + cell line (SKBR3) which was further improved following sonication with LFUS. Combining immunoliposomes with LFUS is a promising technique in the field of targeted drug delivery that can enhance efficiency and reduce the cytotoxicity of antineoplastic drugs.
A number of promising nano-sized particles (nanoparticles) have been developed to conquer the limitations of conventional chemotherapy. One of the most promising methods is stimuli-responsive nanoparticles because they enable the safe delivery of the drugs while controlling their release at the tumor sites. Different intrinsic and extrinsic stimuli can be used to trigger drug release such as temperature, redox, ultrasound, magnetic field, and pH. The intracellular pH of solid tumors is maintained below the extracellular pH. Thus, pH-sensitive nanoparticles are highly efficient in delivering drugs to tumors compared to conventional nanoparticles. This review provides a survey of the different strategies used to develop pH-sensitive nanoparticles used in cancer therapy.
The extensive genetic resources of Chlamydomonas has led to its widespread use as a model system for understanding fundamental processes in plant cells, including rates of cell division potentially modulated through polyamines. Putrescine was the major polyamine in both free (88%) and membrane-bound fractions (93%) while norspermidine was the next most abundant in these fractions accounting for 11% and 6%, respectively. Low levels of diaminopropane, spermidine and spermine were also observed although no cadaverine or norspermine were detected. Ornithine decarboxylase (ODC, EC 4.1.1.17) activity was almost five times higher than arginine decarboxylase (ADC, EC 4.1.1.19) and is the major route of putrescine synthesis. The fluoride analogue of ornithine (α-DFMO) inhibited membrane associated ODC activity whilst simultaneously stimulating cell division in a dose dependent manner. Following exposure to α-DFMO the putrescine content in the cells declined while the norspermidine content increased over two fold. Addition of norspermidine to cultures stimulated cell division mimicking the effects observed using DFMO and also reversed the inhibitory effects of cyclohexylamine on growth. The results reveal that ODC is the major route to polyamine formation in the Chlamydomonas CC-406 cell-wall mutant, in contrast to the preferential ADC route reported for Chlorella vulgaris, suggesting that significant species differences exist in biosynthetic pathways which modulate endogenous polyamine levels in green algae.
Doxorubicin (DOX) is one of the most widely used anthracycline anticancer drugs due to its high efficacy and evident antitumoral activity on several cancer types. However, its effective utilization is hindered by the adverse side effects associated with its administration, the detriment to the patients’ quality of life, and general toxicity to healthy fast-dividing cells. Thus, delivering DOX to the tumor site encapsulated inside nanocarrier-based systems is an area of research that has garnered colossal interest in targeted medicine. Nanoparticles can be used as vehicles for the localized delivery and release of DOX, decreasing the effects on neighboring healthy cells and providing more control over the drug’s release and distribution. This review presents an overview of DOX-based nanocarrier delivery systems, covering loading methods, release rate, and the cytotoxicity of liposomal, micellar, and metal organic frameworks (MOFs) platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.