The natural history and treatment outcome of hepatitis B viruses (HBV) infection is largely dependent on genotype, subgenotype, and the presence or absence of virulence associated mutations. We have studied the prevalence of genotype and subgenotype as well as virulence and drug resistance associated mutations and prevalence of recombinant among HBV from Bangladesh. A prospective cross-sectional study was conducted among treatment naïve chronic HBV patients attending at Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh for HBV viral load assessment between June and August 2015. Systematical selected 50% of HBV DNA positive patients (every second patient) were enrolled. Biochemical and serological markers for HBV infection and whole genome sequencing (WGS) was performed on virus positive sample. Genotype, subgenotype, virulence, nucleos(t)ide analogue (NA) resistance (NAr) mutations, and the prevalence of recombinant isolates were determined. Among 114 HBV DNA positive patients, 57 were enrolled in the study and 53 HBV WGS were generated for downstream analysis. Overall, 38% (22/57) and 62% (35/57) of patients had acute and chronic HBV infections, respectively. The prevalence of genotypes A, C, and D was 18.9% (10/53), 45.3% (24/53), and 35.8% (19/53), respectively. Among genotype A, C and D isolates subgenotype A1 (90%; 9/10), C1 (87.5%; 21/24) and D2 (78.9%; 15/19) predominates. The acute infection, virulence associated mutations, and viral load was higher in the genotype D isolates. Evidence of recombination was identified in 22.6% (12/53) of the HBV isolates including 20.0% (2/10), and 16.7% (4/24) and 31.6% (6/19) of genotype A, C and D isolates, respectively. The prevalence of recombination was higher in chronic HVB patients (32.2%; 10/31 versus 9.1%; 2/22); p<0.05. NAr mutations were identified in 47.2% (25/53) of the isolates including 33.9% novel mutations (18/53). HBV genotype C and D predominated in this population in Bangladesh; a comparatively high prevalence of recombinant HBV are circulating in this setting.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
BackgroundThe Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is an important polyphagous pest of horticultural produce. The sterile insect technique (SIT) is a proven control method against many insect pests, including fruit flies, under area-wide pest management programs. High quality mass-rearing process and the cost-effective production of sterile target species are important for SIT. Irradiation is reported to cause severe damage to the symbiotic community structure in the mid gut of fruit fly species, impairing SIT success. However, studies have found that target-specific manipulation of insect gut bacteria can positively impact the overall fitness of SIT-specific insects.ResultsTwelve bacterial genera were isolated and identified from B. dorsalis eggs, third instars larval gut and adults gut. The bacterial genera were Acinetobacter, Alcaligenes, Citrobacter, Pseudomonas, Proteus, and Stenotrophomonas, belonging to the Enterobacteriaceae family. Larval diet enrichment with the selected bacterial isolate, Proteus sp. was found to improve adult emergence, percentage of male, and survival under stress. However, no significant changes were recorded in B. dorsalis egg hatching, pupal yield, pupal weight, duration of the larval stage, or flight ability.ConclusionsThese findings support the hypothesis that gut bacterial isolates can be used in conjunction with SIT. The newly developed gel-based larval diet incorporated with Proteus sp. isolates can be used for large-scale mass rearing of B. dorsalis in the SIT program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.