User perception in any mobile-app ecosystem, is represented as user ratings of apps. Unfortunately, the user ratings are often biased and do not reflect the actual usability of an app. To address the challenges associated with selection and ranking of apps, we need to use a comprehensive and holistic view about the behavior of an app. In this paper, we present and evaluate Trust based Rating and Ranking (TRR) approach. It relies solely on an apps' internal view that uses programmatic artifacts. We compute a trust tuple (Belief, Disbelief, Uncertainty -B, D, U) for each app based on the internal view and use it to rank the order apps offering similar functionality. Apps used for empirically evaluating the TRR approach are collected from the Google Play Store. Our experiments compare the TRR ranking with the user review-based ranking present in the Google Play Store. Although, there are disparities between the two rankings, a slightly deeper investigation indicates an underlying similarity between the two alternatives.
Communities are adversely affected by heterogeneous social harm events (e.g., crime, traffic crashes, medical emergencies, drug use) and police, fire, health and social service departments are tasked with mitigating social harm through various types of interventions. Smart cities of the future will need to leverage IoT, data analytics, and government and community human resources to most effectively reduce social harm. Currently, methods for collection, analysis, and modeling of heterogeneous social harm data to identify government actions to improve quality of life are needed. In this paper we propose a system, CDASH, for synthesizing heterogeneous social harm data from multiples sources, identifying social harm risks in space and time, and communicating the risk to the relevant community resources best equipped to intervene. We discuss the design, architecture, and performance of CDASH. CDASH also allows users to report live social harm events using mobile hand-held devices and web browsers and flags high risk areas for law enforcement and first responders. To validate the methodology, we run simulations on historical social harm event data in Indianapolis illustrating the advantages of CDASH over recently introduced social harm indices and existing point process methods used for predictive policing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.