The Southern Photometric Local Universe Survey (S-PLUS) is imaging ∼9300 deg2 of the celestial sphere in 12 optical bands using a dedicated 0.8 m robotic telescope, the T80-South, at the Cerro Tololo Inter-american Observatory, Chile. The telescope is equipped with a 9.2k × 9.2k e2v detector with 10 $\rm {\mu m}$ pixels, resulting in a field of view of 2 deg2 with a plate scale of 0.55 arcsec pixel−1. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (|b| > 30°, 8000 deg2) and two areas of the Galactic Disc and Bulge (for an additional 1300 deg2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 ugriz broad-band filters and 7 narrow-band filters centred on prominent stellar spectral features: the Balmer jump/[OII], Ca H + K, H δ, G band, Mg b triplet, H α, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (δz/(1 + z) = 0.02 or better) for galaxies with r < 19.7 AB mag and z < 0.4, thus producing a 3D map of the local Universe over a volume of more than $1\, (\mathrm{Gpc}/h)^3$. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ∼336 deg2 of the Stripe 82 area, in 12 bands, to a limiting magnitude of r = 21, available at datalab.noao.edu/splus.
In this paper we present a thorough discussion about the photometric redshift (photo-z) performance of the Southern Photometric Local Universe Survey (S-PLUS). This survey combines a 7 narrow + 5 broad passband filter system, with a typical photometric-depth of r∼21 AB. For this exercise, we utilize the Data Release 1 (DR1), corresponding to 336 deg2 from the Stripe-82 region. We rely on the BPZ2 code to compute our estimates, using a new library of SED models, which includes additional templates for quiescent galaxies. When compared to a spectroscopic redshift control sample of ∼100k galaxies, we find a precision of σz <0.8%, <2.0% or <3.0% for galaxies with magnitudes r<17, <19 and <21, respectively. A precision of 0.6% is attained for galaxies with the highest Odds values. These estimates have a negligible bias and a fraction of catastrophic outliers inferior to 1%. We identify a redshift window (i.e., 0.26<z <0.32) where our estimates double their precision, due to the simultaneous detection of two emission-lines in two distinct narrow-bands; representing a window opportunity to conduct statistical studies such as luminosity functions. We forecast a total of ∼2M, ∼16M and ∼32M galaxies in the S-PLUS survey with a photo-z precision of σz <1.0%, <2.0% and <2.5% after observing 8000 deg2. We also derive redshift Probability Density Functions, proving their reliability encoding redshift uncertainties and their potential recovering the n(z) of galaxies at z < 0.4, with an unprecedented precision for a photometric survey in the southern hemisphere.
We present photometric and spectroscopic observations of SN 2013aa and SN 2017cbv, two nearly identical type Ia supernovae (SNe Ia) in the host galaxy NGC 5643. The optical photometry has been obtained using the same telescope and instruments used by the Carnegie Supernova Project. This eliminates most instrumental systematics and provides light curves in a stable and well-understood photometric system. Having the same host galaxy also eliminates systematics due to distance and peculiar velocity, providing an opportunity to directly test the relative precision of SNe Ia as standard candles. The two SNe have nearly identical decline rates, negligible reddenings, and remarkably similar spectra, and, at a distance of ∼20 Mpc, they are ideal potential calibrators for the absolute distance using primary indicators such as Cepheid variables. We discuss to what extent these two SNe can be considered twins and compare them with other supernova “siblings” in the literature and their likely progenitor scenarios. Using 12 galaxies that hosted two or more SNe Ia, we find that when using SNe Ia, and after accounting for all sources of observational error, one gets consistency in distance to 3%.
SN 2017jgh is a type IIb supernova discovered by Pan-STARRS during the C16/C17 campaigns of the Kepler/K2 mission. Here we present the Kepler/K2 and ground based observations of SN 2017jgh, which captured the shock cooling of the progenitor shock breakout with an unprecedented cadence. This event presents a unique opportunity to investigate the progenitors of stripped envelope supernovae. By fitting analytical models to the SN 2017jgh lightcurve, we find that the progenitor of SN 2017jgh was likely a yellow supergiant with an envelope radius of ∼50 − 290 R⊙, and an envelope mass of ∼0 − 1.7 M⊙. SN 2017jgh likely had a shock velocity of ∼7500 − 10300 km s−1. Additionally, we use the lightcurve of SN 2017jgh to investigate how early observations of the rise contribute to constraints on progenitor models. Fitting just the ground based observations, we find an envelope radius of ∼50 − 330 R⊙, an envelope mass of ∼0.3 − 1.7 M⊙ and a shock velocity of ∼9, 000 − 15, 000 km s−1. Without the rise, the explosion time can not be well constrained which leads to a systematic offset in the velocity parameter and larger uncertainties in the mass and radius. Therefore, it is likely that progenitor property estimates through these models may have larger systematic uncertainties than previously calculated.
Cool gas (T∼104 K) traced by hydrogen Lyα emission is now routinely detected around z ∼ 3 quasars, but little is known about their molecular gas reservoirs. Here, we present an APEX spectroscopic survey of the CO(6-5), CO(7-6) and [C i](2-1) emission lines for 9 quasars from the QSO MUSEUM survey which have similar UV luminosities, but very diverse Lyα nebulae. These observations ($\langle ~\rm rms~\rangle =2.6$ mJy in 300 km s−1) detected three CO(6-5) lines with 3.4≤ICO(6-5) ≤5.1 Jy km s−1, 620≤FWHM≤707 km s−1, and three [C i](2-1) lines with 2.3$\le I_{\rm [C\small {I}](2-1)} \le$15.7 Jy km s−1, 329≤FWHM≤943 km s−1. For the CO and [C i] detected sources, we constrain the molecular gas reservoirs to be $\rm M_{H_{2}} = (0.4-6.9) \times 10^{11} M_{\odot }$, while the non-detections imply $\rm M_{H_{2}} < 1.1\times 10^{11} M_{\odot }$. We compare our observations with the extended Lyα properties to understand the link between the cool and the molecular gas phases. We find large velocity shifts between the bulk of Lyα and the molecular gas systemic redshift in five sources (from ∼-400 to ∼+1200 km s−1). The sources with the largest shifts have the largest Lyα line widths in the sample, suggesting more turbulent gas conditions and/or large-scale inflows/outflows around these quasars. We also find that the brightest ($I_{\rm [C\small {I}](2-1)}=15.7\pm 3.7~\rm Jy~km~s^{-1}$) and the widest (FWHM∼900 km s−1) lines are detected for the smallest and dimmest Lyα nebulae. From this, we speculate that host galaxy obscuration can play an important role in reducing the ionizing and Lyα photons able to escape to halo scales, and/or that these systems are hosted by more massive haloes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.