Enterospora nucleophila is an intranuclear microsporidian responsible for emaciative microsporidiosis of gilthead sea bream (GSB). Its minute size and cryptic nature make it easily misdiagnosed. An in situ hybridization (ISH) technique based on antisense oligonucleotide probes specific for the parasite was developed and used in clinically infected GSB in combination with calcofluor white stain (CW) and other histopathological techniques. The ISH method was found to label very conspicuously the cells containing parasite stages, with the signal concentrating in merogonial and sporogonial plasmodia within the infected cell nuclei. Comparison with CW demonstrated limited ISH signal in cells containing mature spores, which was attributed mostly to the scarcity of probe targets present in these stages. Although spores were detected in other organs of the digestive system as well as in the peripheral blood, proliferative stages or parasite reservoirs were not found in this work outside the intestines. The study demonstrated a frequent disassociation between the presence of abundant spores and the intensity of the infections as determined by the parasite activity. The ISH allows confirmatory diagnosis of GSB microsporidiosis and estimation of infection intensity and will be a valuable tool for a more precise determination of parasite dissemination pathways and pathogeny mechanisms.
Enterospora nucleophila is a microsporidian enteroparasite that infects mainly the intestine of gilthead sea bream (Sparus aurata), leading to an emaciative syndrome. Thus far, the only available information about this infection comes from natural outbreaks in farmed fish. The aim of the present study was to determine whether E. nucleophila could be transmitted horizontally using naturally infected fish as donors, and to establish an experimental in vivo procedure to study this host–parasite model without depending on natural infections. Naïve fish were exposed to the infection by cohabitation, effluent, or intubated either orally or anally with intestinal scrapings of donor fish in four different trials. We succeeded in detecting parasite in naïve fish in all the challenges, but the infection level and the disease signs were always milder than in donor fish. The parasite was found in peripheral blood of naïve fish at 4 weeks post-challenge (wpc) in oral and effluent routes, and up to 12 wpc in the anal transmission trial. Molecular diagnosis detected E. nucleophila in other organs besides intestine, such as gills, liver, stomach or heart, although the intensity was not as high as in the target tissue. The infection tended to disappear through time in all the challenge routes assayed, except in the anal infection route.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.