Expansive soils are found in typical areas in the world especially in arid and semi-arid regions. The problems associated with this type of soil drive geotechnical engineers to invent new technologies as remediation’s such as physical and chemical treatments. Innovative foundation techniques were also suggested for remedying the swell-shrink problems of the expansive soil. The granular pile anchor (GPA) is relatively a more favorable technique indebted to its cost-effective, easy and fast to assemble and most importantly was found to be more efficient in remedying the expansive soil. Despite the extensive studies on the expansive soil remedies, yet the granular pile anchor system requires more comprehensive and in-depth investigations. This study is aimed at developing a model with granular piles of various length and diameter extended to the stable zone to investigate the heave and uplift pressure in the expansive soil. For this purpose, experimental and numerical analysis were conducted in a small and in a full scale model respectively. A significant improvement was attained in heave reduction and an increment of uplift capacity. The findings also show that heave decreased significantly when the length and diameter of the GPA increases while the uplift capacity increased. However, it was noted that the extension of length to the stable zone resulted in insignificant changes. Therefore, it can be concluded that the maximum length of 6 m is the ideal length for GPA with different diameters according to foundations design requirement for this particular type of soil.
<span lang="EN-GB">Expansive soil is found in many parts of the world where its major drawback is its expansion and shrinking property upon moisture absorption and drying during alternation of rainy-dry seasons. Due to its swelling-shrinkage repeated process, fatigue and distress cause crack to structures. Granular pile anchor (GPA) system is a pioneering technique that is utilised in reinforcing these expansive soils. Granular pile anchor (GPA) system is a pioneering technique that is utilised in reinforcing expansive soils. The GPA provides tensile resistance which arrest the exerted upward forces and hence reducing heave. Previous investigations have only focused on load-displacement relationships by utilizing the pull-out technique. In this technique, an external force pulls the GPA and the corresponding displacements are recorded. The results provide indication of the GPA resistance to the applied force. However, in real conditions the heave and expansion forces were developed as a result of the pressure caused by the water absorption which pushes the entire soil bed in the upward direction along with the GPA. Therefore, this paper is aimed to explore this concept by carrying experimental and numerical investigations on a small scale model for a single pile with a diameter of 4 cm, with lengths of 20 and 40 cm. Ultimately, the reinforced soil exhibits reduction in upward force and heave compared to the unreinforced soil. Also, verifications for the testing shows that the relationship between the upward force and heave exhibits almost linear relationship for both experimental and numerical investigations. Therefore, shallow foundations incorporated with a GPA system proves to effectively lessen the heave that occurs in expansive soils which in turn can solve problems for constructions.</span>
Granular pile anchor foundations (GPAF) are considered a significant promising foundation system to alleviate the serious effects of changes in the volume of expansive soils that occur throughout shrinkage and expansion. In this paper, 3D finite element analyses are presented by applying PLAXIS software, which is carried out on a typical double-story building built over a GPAF system in expansive soil. An investigation on GPAF system is presented in terms of its resistance ability to the forces caused by the soil movement as a result of variant moisture and the effect of the resistance on the superstructure induced by the straining actions. The results indicate the significance of the GPAF system in restricting the soil movement with high efficiency, which results in a noticeable improvement in the building structural responses in terms of uplift forces, heave and induced deformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.