Marine heatwaves (MHWs) have caused declines in many kelp forests globally. Although the ecological effects of these climatic extremes have been well examined, studies on the role of genotypic variation in underpinning population responses under pressures are lacking. Understanding how kelps respond to different warming profiles and, in particular, intraspecific variation in responses is necessary to confidently anticipate the future of kelp forests, yet this remains a critical knowledge gap for most species. This study examined the responses of early life stages of 9 different genotypes of the Australian kelp Ecklonia radiata to different MHW profiles, where cumulative heat intensity was kept constant: control treatment (constant 19°C), heat spikes (fluctuating 19-23°C), low intensity MHW (ramp up 23°C) and high intensity MHW (ramp up 27°C). Overall, we found significant declines in E. radiata gametophyte performance in all MHW treatments and delays in sporophyte recruitment during MHW exposure. We also found significant genotype by environment (G×E) interactions, suggesting tolerance to acute thermal stress is influenced by genetic variation. Our results showed that offspring from different genotypes within the same population respond differently to MHWs, indicating that some genotypes are susceptible to MHWs while others are more resistant. While the effects on standing genetic variation and subsequent susceptibility to other stressors are unknown, our findings suggest that in addition to immediate impacts on marine organisms, natural genotypic variation in response to thermal anomalies may facilitate the gradual evolution of populations with increased thermal tolerance under future climates.
Kelps (order Laminariales) are foundation species in temperate and arctic seas globally, but they are in decline in many places. Laminarian kelp have an alternation of generations and this poses challenges for experimental studies due to the difficulties in achieving zoospore release and gametophyte growth. Here, we review and synthesize the protocols that have been used to induce zoospore release in kelps to identify commonalities and provide guidance on best practices. We found 171 papers, where zoospore release was induced in four kelp families from 35 different ecoregions. The most commonly treated family was Laminariaceae, followed by Lessoniaceae and the most studied ecoregion was Central Chile, followed by the Southern California Bight. Zoospore release generally involved three steps: a pretreatment which included cleaning of the reproductive tissue to eliminate epiphytic organisms, followed by desiccation of the tissue, and finally a postdesiccation immersion of the reproductive material in a seawater medium for zoospore release. Despite these commonalities, there was a high degree of variation in the detail within each of these steps, even among studies within genera and from the same ecoregions. This suggests either that zoospore release may be relatively insensitive across the Laminariales or that little methods optimization has been undertaken. We suggest that greater attention to standardization of protocols and reporting of methodology and optimization would improve comparisons of kelp zoospore release across species and locations and facilitate a broader understanding of this key, but understudied life history stage. Open Research Badges This article has earned an Open Data Badge for making publicly available the digitally‐shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.0kh1f8j .
Kelp forests are experiencing substantial declines due to climate change, particularly ocean warming and marine heatwaves, and active interventions are necessary to halt this decline. A new restoration approach termed “green gravel” has shown promise as a tool to combat kelp forest loss. In this approach, substrata (i.e. small gravel) are seeded with kelp propagules, reared in controlled conditions in the laboratory before out-planting to degraded reefs. Here, we tested the feasibility of cultivating Australia’s dominant kelp, Ecklonia radiata on green gravel with the aim of optimising the seeding conditions for E.radiata. We seeded substrata (i.e. gravel), that had different surface texture and size, with E. radiata gametophytes at two average seeding densities: high density of ~230 fragments mL-1 and low density of ~115 fragments mL-1. The tested substrata were small basalt, large basalt, crushed laterite and limestone. Gametophytes successfully adhered to all four tested substrata, however, gametophytes that adhered to the limestone gravel (the natural reef type off Western Australia) suffered extreme tissue bleaching likely due to dissolution and decrease in seawater pH. Gametophytes that adhered to the three other test substrata were healthy, fertilised following seeding and microscopic sporophytes were observed attaching to the gravel. Substrata and seeding density did not affect sporophyte growth (i.e. length) at the time of transferring into aquarium tanks (after three months of rearing in incubators) but over time substrata showed a significant effect on maximum lengths. After 12 months in aquarium tanks, sporophytes on both small and large basalt gravel were significantly larger than those on the crushed laterite. Gametophytes were also found to not only survive on the gravel itself but also detach from the gravel, settle successfully, fertilise and develop into healthy sporophytes ex situ on the surrounding substratum through lateral transfer. Substrata had a significant effect on density of detached gametophytes with rougher and larger gravel showing higher densities of detachment. Our results show the potential for green gravel to be a vector of dispersal for restoration in Western Australia where natural recovery of kelp forests has failed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.