Paracellin-1 (PCLN-1) belongs to the claudin family of tight junction proteins and possibly plays a critical role in the reabsorption of magnesium and calcium. So far, the physiological properties of PCLN-1 have not been clarified. In the present study, we investigated whether PCLN-1 is associated with ZO-1. We also investigated whether 45 Ca 2؉ transport across the paracellular barrier is affected by this association. In vitro binding analysis using glutathione S-transferase fusion protein showed that the C-terminal TRV sequence, especially Thr and Val residues, of PCLN-1 interacts with ZO-1. Next, PCLN-1 was stably expressed in Madin-Darby canine kidney cells using a FLAG tagging vector. ZO-1 was co-immunoprecipitated with the wild-type PCLN-1 and the alanine substitution (TAV) mutant. However, mutants of the deletion (⌬TRV) and the alanine substitution (ARV and TRA) inhibited the association of PCLN-1 with ZO-1. Confocal immunofluorescence demonstrated that the wild-type PCLN-1 and the TAV mutant localized in the tight junction along with ZO-1, but the ⌬TRV, ARV, and TRA mutants were widely distributed in the lateral membrane including the tight junction area. Interestingly, monolayers of cells expressing the wild-type PCLN-1 and the TAV mutant showed higher activities of 45 Ca 2؉ transport from apical to basal compartments, compared with those expressing the ⌬TRV, ARV, and TRA mutants and the mock cells. 45 Ca 2؉ transport was inhibited by increased magnesium concentration suggesting that magnesium and calcium were competitively transported by PCLN-1. It was noted that a positive electrical potential gradient enhanced 45 Ca 2؉ transport from apical to basal compartments without affecting the opposite direction of transport. Thus, PCLN-1 localizes to the tight junction followed by association with ZO-1, and the PCLN-1⅐ZO-1 complex may play an essential role in the reabsorption of divalent cations in renal epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.