We investigated the protective effect of mild stress on gastric lesions induced by cold-restraint stress, especially concerning prostaglandins (PGs)/cyclo-oxygenase (COX) isozymes. Rats were exposed to severe stress (cold-restraint stress at 10 degrees C for 6 hr) or mild stress (cold-restraint stress at 10 degrees C for 30 min and kept at room temperature for 60 min) followed by severe stress. Severe stress induced gastric lesions, with a concomitant decrease in body temperature (BT). The ulcerogenic response was inhibited by atropine but worsened by indomethacin and SC-560 but not rofecoxib, although none of these agents had any effect on the change in BT. Mild stress suppressed the gastric ulceration and the decrease in BT induced by severe stress, and these effects were reversed by both COX-1 and COX-2 inhibitors. The expression of COX-2 in the stomach was up-regulated from 4 hr after severe stress and this response was slightly expedited by mild stress. COX-2 was also expressed in the hypothalamus under normal and stressed conditions. Quinacrine (phospholipase A(2) inhibitor) attenuated the protective effect of mild stress on the ulceration and decrease in BT caused by severe stress. TA-0910 (TRH analogue) at a low dose also prevented the gastric ulceration and the decrease in BT induced by severe stress. These results suggest that mild stress protects against cold-restraint stress-induced gastric ulceration, and the effect is peripherally and centrally mediated by PGs derived from both COX-1 and COX-2 through the activation of phospholipase A(2). TRH may also be involved in the protective effect of mild stress, probably through regulation of the thermogenic system.
Vascular endothelial growth factor (VEGF), a fundamental regulator of angiogenesis, plays an important role in gastric ulcer healing. In addition, prostaglandin E2 (PGE2), derived from cyclooxygenase-2, stimulates VEGF release in gastric fibroblasts. In the present study, we examined which EP receptor subtype is involved in the expression of VEGF in primary rat gastric fibroblasts. PGE2 stimulated VEGF protein expression in the fibroblasts in a time- and dose-dependent manner. The up-regulation by PGE2 of VEGF expression was completely inhibited by a subtype selective EP4 receptor antagonist (AE3-208). Furthermore, the selective EP4 receptor agonist, AE1-329, promoted VEGF expression in the fibroblasts, and this effect was also totally antagonized by AE3-208. These results suggest that PGE2 stimulates VEGF expression in gastric fibroblasts through the activation of EP4 receptors, and this effect may be involved in the healing promoting action of PGE2 on gastric ulcers.
Background and Aim: We investigated the roles of cyclooxygenase (COX) isozymes and prostaglandins (PGs) and their receptors in mucosal defense against cold-restraint stress (CRS)-induced gastric lesions. Methods: Male C57BL/6 wild-type (WT) mice and those lacking COX-1 or COX-2 as well as those lacking EP1, EP3, or IP receptors were used after 18 h fasting. Animals were restrained in Bollman cages and kept in a cold room at 10°C for 90 min. Results: CRS induced multiple hemorrhagic lesions in WT mouse stomachs. The severity of these lesions was significantly worsened by pretreatment with the nonselective COX inhibitors (indomethacin, loxoprofen) or selective COX-1 inhibitor (SC-560), while neither of the selective COX-2 inhibitors (rofecoxib and celecoxib) had any effect. These lesions were also aggravated in animals lacking COX-1, but not COX-2. The expression of COX-2 mRNA was not detected in the stomach after CRS, while COX-1 expression was observed under normal and stressed conditions. The gastric ulcerogenic response to CRS was similar between EP1 or EP3 knockout mice and WT mice, but was markedly worsened in animals lacking IP receptors. Pretreating WT mice with iloprost (the PGI2 analog) significantly prevented CRS-induced gastric lesions in the presence of indomethacin. PGE2 also reduced the severity of these lesions, and the effect was mimicked by the EP4 agonist, AE1-329. Conclusions: These results suggest that endogenous PGs derived from COX-1 play a crucial role in gastric mucosal defense during CRS, and this action is mainly mediated by PGI2/IP receptors and partly by PGE2/EP4 receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.