We report a novel microwave plasma enhanced chemical vapor deposition strategy for the efficient synthesis of multilayer graphene nanoflake films (MGNFs) on Si substrates. The constituent graphene nanoflakes have a highly graphitized knife‐edge structure with a 2–3 nm thick sharp edge and show a preferred vertical orientation with respect to the Si substrate as established by near‐edge X‐ray absorption fine structure spectroscopy. The growth rate is approximately 1.6 µm min−1, which is 10 times faster than the previously reported best value. The MGNFs are shown to demonstrate fast electron‐transfer (ET) kinetics for the Fe(CN)63−/4− redox system and excellent electrocatalytic activity for simultaneously determining dopamine (DA), ascorbic acid (AA) and uric acid (UA). Their biosensing DA performance in the presence of common interfering agents AA and UA is superior to other bare solid‐state electrodes and is comparable only to that of edge plane pyrolytic graphite. Our work here, establishes that the abundance of graphitic edge planes/defects are essentially responsible for the fast ET kinetics, active electrocatalytic and biosensing properties. This novel edge‐plane‐based electrochemical platform with the high surface area and electrocatalytic activity offers great promise for creating a revolutionary new class of nanostructured electrodes for biosensing, biofuel cells and energy‐conversion applications.
Bulk quantities of graphene nanosheets and nanodots have been selectively fabricated by mechanical grinding exfoliation of natural graphite in a small quantity of ionic liquids. The resulting graphene sheets and dots are solvent free with low levels of naturally absorbed oxygen, inherited from the starting graphite. The sheets are only two to five layers thick. The graphene nanodots have diameters in the range of 9-29 nm and heights in the range of 1-16 nm, which can be controlled by changing the processing time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.