Neuroblastoma is a solid tumor that arises from the developing sympathetic nervous system. Over the past decade, our understanding of this disease has advanced tremendously. The future challenge is to apply the knowledge gained toward developing risk-based therapies and ultimately improving outcome. Here we review the key discoveries in the developmental biology, molecular genetics, and immunology of neuroblastoma, as well as new translational tools to bring these promising scientific advances into the clinic.
Antitumor mAb bind to tumors and activate complement, coating tumors with iC3b. Intravenously administered yeast β-1,3;1,6-glucan functions as an adjuvant for antitumor mAb by priming the inactivated C3b (iC3b) receptors (CR3; CD11b/CD18) of circulating granulocytes, enabling CR3 to trigger cytotoxicity of iC3b-coated tumors. Recent data indicated that barley β-1,3;1,4-glucan given orally similarly potentiated the activity of antitumor mAb, leading to enhanced tumor regression and survival. This investigation showed that orally administered yeast β-1,3;1,6-glucan functioned similarly to barley β-1,3;1,4-glucan with antitumor mAb. With both oral β-1,3-glucans, a requirement for iC3b on tumors and CR3 on granulocytes was confirmed by demonstrating therapeutic failures in mice deficient in C3 or CR3. Barley and yeast β-1,3-glucan were labeled with fluorescein to track their oral uptake and processing in vivo. Orally administered β-1,3-glucans were taken up by macrophages that transported them to spleen, lymph nodes, and bone marrow. Within the bone marrow, the macrophages degraded the large β-1,3-glucans into smaller soluble β-1,3-glucan fragments that were taken up by the CR3 of marginated granulocytes. These granulocytes with CR3-bound β-1,3-glucan-fluorescein were shown to kill iC3b-opsonized tumor cells following their recruitment to a site of complement activation resembling a tumor coated with mAb.
Retrospective analysis of consecutive trials from a single center demonstrated that MoAb 3F8 + GM-CSF + CRA is effective against chemotherapy-resistant marrow MRD. Its positive impact on long-term survival can only be confirmed definitively by randomized studies.
SUMMARY
The ALKF1174L mutation is associated with intrinsic and acquired resistance to crizotinib and cosegregates with MYCN in neuroblastoma. In this study, we generated a mouse model overexpressing ALKF1174L in the neural crest. Compared to ALKF1174L and MYCN alone, coexpression of these two oncogenes led to the development of neuroblastomas with earlier onset, higher penetrance and enhanced lethality. ALKF1174L/MYCN tumors exhibited increased MYCN dosage due to ALKF1174L-induced activation of the PI3K/AKT/mTOR and MAPK pathways, coupled with suppression of MYCN pro-apoptotic effects. Combined treatment with the ATP-competitive mTOR inhibitor Torin2, overcame the resistance of ALKF1174L/MYCN tumors to crizotinib. Our findings demonstrate a pathogenic role for ALKF1174L in neuroblastomas overexpressing MYCN and suggest a strategy for improving targeted therapy for ALK-positive neuroblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.