Isoflavones have gained popularity as an alternative treatment for menopausal symptoms for people who cannot or are unwilling to take hormone replacement therapy. However, there is still no consensus on the effects of isoflavones despite over two decades of vigorous research. This systematic review aims to summarize the current literature on isoflavone supplements, focusing on the active ingredients daidzein, genistein, and S-equol, and provide a framework to guide future research. We performed a literature search in Ovid Medline using the search terms “isoflavone” and “menopause”, which yielded 95 abstracts and 68 full-text articles. We found that isoflavones reduce hot flashes even accounting for placebo effect, attenuate lumbar spine bone mineral density (BMD) loss, show beneficial effects on systolic blood pressure during early menopause, and improve glycemic control in vitro. There are currently no conclusive benefits of isoflavones on urogenital symptoms and cognition. Due to the lack of standardized research protocols including isoflavone component and dosage, outcomes, and trial duration, it is difficult to reach a conclusion at this point in time. Despite these limitations, the evidence thus far favors the use of isoflavones due to their safety profile and benefit to overall health.
Osteoporosis is a major concern all over the world. With aging, a gradual loss of bone mass results in osteopenia and osteoporosis. Heritable factors account for 60–80% of optimal bone mineralization. Modifiable factors, such as weight-bearing exercise, nutrition, body mass, and hormonal milieu, play an important role in the development of osteopenia and osteoporosis in adulthood. Currently, anti-resorptive agents, including estrogen, bisphosphonates, and selective estrogen receptor modulators (SERMs), are the drugs of choice for osteoporosis. Other treatments include parathyroid hormone (PTH) as well as the nutritional support of calcium and vitamin D. New treatments such as tissue-selective estrogen receptor complexes (TSECs) are currently in use too. This review, which is based on a systematic appraisal of the current literature, provides current molecular and genetic opinions on osteoporosis and its medical treatment. It offers evidence-based information to help researchers and clinicians with osteoporosis assessment. However, many issues regarding osteoporosis and its treatment remain unknown or controversial and warrant future investigation.
Osteoporosis is a major concern worldwide and can be attributed to an imbalance between osteoblastic bone formation and osteoclastic bone resorption due to the natural aging process. Heritable factors account for 60–80% of optimal bone mineralization; however, the finer details of pathogenesis remain to be elucidated. Micro RNA (miRNA) and long-non-coding RNA (lncRNA) are two targets that have recently come into the spotlight due to their ability to control gene expression at the post-transcriptional level and provide epigenetic modification. miRNAs are a class of non-coding RNAs that are approximately 18–25 nucleotides long. It is thought that up to 60% of human protein-coding genes may be regulated by miRNAs. They have been found to regulate gene expression that controls osteoblast-dependent bone formation and osteoclast-related bone remodeling. lncRNAs are highly structured RNA transcripts longer than 200 nucleotides that do not translate into proteins. They have very complex secondary and tertiary structures and the same degradation processes as messenger RNAs. The fact that they have a rapid turnover is due to their sponge function in binding the miRNAs that lead to a degradation of the lncRNA itself. They can act as signaling, decoy, and framework molecules, or as primers. Current evidence suggests that lncRNAs can act as chromatin and transcriptional as well as post-transcriptional regulators. With regards to osteoporosis, lncRNA is thought to be involved in the proliferation, apoptosis, and inflammatory response of the bone. This review, which is based on a systematic appraisal of the current literature, provides current molecular and genetic opinions on the roles of miRNAs and lncRNAs in osteoporosis. Further research into the epigenetic modification and the regulatory roles of these molecules will bring us closer to potential disease-modifying treatment for osteoporosis. However, more issues regarding the detailed actions of miRNAs and lncRNAs in osteoporosis remain unknown and controversial and warrant future investigation.
Both focused extracorporeal shockwave (f-ESWT) and radial extracorporeal shockwave therapy (r-ESWT) can alleviate symptoms in patients with knee osteoarthritis, but no trials have directly compared f-ESWT with r-ESWT for knee osteoarthritis. This study aimed to compare the effectiveness of f-ESWT and r-ESWT on knee osteoarthritis. Forty-two patients with bilateral knee osteoarthritis were randomly assigned to receive three sessions of either f-ESWT or r-ESWT at 1-week intervals. The patients were evaluated at baseline and at 4 and 8 weeks after the final treatment. The primary outcome was the change in pain intensity, as measured on the visual analog scale (VAS). Secondary outcomes included the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), range of motion of the knee joint, and the 6-minute walk test. At the end of 4 weeks, the VAS score was substantially reduced in both groups (f-ESWT, −4.5 ± 2.5 points; r-ESWT, −2.6 ± 2.0 points), with a greater reduction in the f-ESWT group. Both groups showed significant improvement in secondary outcomes; however, the f-ESWT group yielded greater improvement in the VAS score, WOMAC score, and 6-minute walk test. Our results showed that f-ESWT was more effective than r-ESWT in improving pain and physical function in patients with knee osteoarthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.