Nanoindentation provides the ideal framework to determine mechanical properties of bone at the tissue scale without being affected by the size, shape, and porosity of the bone. However, the values of tissue level mechanical properties vary significantly between studies. Since the differences in the bone sample, hydration state, and test parameters complicate direct comparisons across the various studies, these discrepancies in values cannot be compared directly. The objective of the current study is to evaluate and compare mechanical properties of the same bones using a broad range of testing parameters. Wild type C56BL6 mice tibiae were embedded following different processes and tested in dry and rehydrated conditions. Spherical and Berkovich indenter probes were used, and data analysis was considered within the elasto-plastic (Oliver-Pharr), viscoelastic and visco-elastic-plastic frameworks. The mean values of plane strain modulus varied significantly depending on the hydration state, probe geometry and analysis method. Indentations in dry bone analyzed using a visco-elastic-plastic approach gave values of 34 GPa. After rehydrating the same bones and indenting them with a spherical tip and utilizing a viscoelastic analysis, the mean modulus value was 4 GPa, nearly an order of magnitude smaller. Results suggest that the hydration state, probe geometry and the limitations and assumptions of each analysis method influence significantly the measured mechanical properties. This is the first time that such a systematic study has been carried out and it has been concluded that the discrepancies in the mechanical properties of bone measured by nanoindentation found in the literature should not be attributed only to the differences between the bones themselves, but also to the testing and analysis protocols.
Three-dimensional (3D) imaging is an important tool for diagnostics, surgical planning, and evaluation of surgical outcomes in craniofacial procedures. Gold standard for acquiring 3D imaging is computed tomography that entails ionizing radiations and, in young children, a general anaesthesia. Three-dimensional photographic imaging is an alternative method to assess patients who have undergone calvarial reconstructive surgery. The aim of this study was to assess the utility of 3D handheld scanning photography in a cohort of patients who underwent spring-assisted correction surgery for scaphocephaly. Pre- and postoperative 3D scans acquired in theater and at the 3-week follow-up in clinic were postprocessed for 9 patients. Cephalic index (CI), head circumference, volume, sagittal length, and coronal width over the head at pre-op, post-op, and follow-up were measured from the 3D scans. Cephalic index from 3D scans was compared with measurements from planar x-rays. Statistical shape modeling (SSM) was used to calculate the 3D mean anatomical head shape of the 9 patients at the pre-op, post-op, and follow-up. No significant differences were observed in the CI between 3D and x-ray. Cephalic index, volume, and coronal width increased significantly over time. Mean shapes from SSM visualized the overall and regional 3D changes due to the expansion of the springs in situ. Three-dimensional handheld scanning followed by SSM proved to be an efficacious and practical method to evaluate 3D shape outcomes after spring-assisted cranioplasty in individual patients and the population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.