Proper oocyte maturation is crucial for subsequent embryo development; however, oocyte mitochondrial and lipid-droplet behaviour are still poorly understood. Although excessive lipid accumulation during in vitro production (IVP) of bovine embryos has been linked with impaired cryotolerance, lipid oxidation is essential for adequate energy supply. Fetal bovine serum (FBS) and bovine serum albumin (BSA) are supplements used during IVP, containing high and low lipid content, respectively. This study aimed to understand how these supplements influence oocyte mitochondrial and lipid behaviour during in vitro maturation (IVM) in comparison to in vivo maturation, as well as their influence on development rates and embryo lipid accumulation during IVP. We demonstrate that only in vivo-matured oocytes maintained correlation between lipid content and active mitochondria. IVM media containing FBS increased total lipid content 18-fold and resulted in higher lipid accumulation in oocytes when compared with media with BSA. IVM using a lower FBS concentration combined with BSA resulted in satisfactory maturation and embryo development and also reduced lipid accumulation in blastocysts. In conclusion, IVM causes changes in mitochondrial and lipid dynamics, which may have negative effects on oocyte development rates and embryo lipid accumulation. Moreover, decreasing FBS concentrations during IVM may reduce embryo lipid accumulation without affecting production rates.
The objective was to evaluate reproductive tract development (ovary and uterus) and onset of puberty in two lines of Nellore heifers (Bos indicus) selected for postweaning weight. A total of 123 heifers, including 46 from the control Nellore line (NeC) and 77 from the selection Nellore line (NeS) were used. Every 18 to 21 days from 12 to 24 months of age, average ovarian area (OVA), endometrial thickness (ETh), and diameter of the largest follicle in each ovary were evaluated (using transrectal ultrasonography), and body weight, hip height, and body condition score were measured. There were no differences between NeS and NeC heifers for ETh or OVA (P < 0.05). Genetic selection for higher postweaning weight had no negative influence on the onset of puberty, with 52% and 48% of NeC and NeS heifers, respectively, pubertal at 24 months of age (P = 0.49). Heifers that reached puberty at the end of the study were heavier (NeC, 296.9 vs. 276.7 kg; NeS, 343.5 vs. 327.9 kg; P < 0.01) and younger (NeC, 23.4 vs. 24.2 mo; NeS, 22.7 vs. 24.0 months; P < 0.01) than those that did not. Furthermore, heifers that were heavier at weaning reached puberty earlier. Pubertal heifers had a greater OVA (4.15 vs. 3.14 cm(2); P < 0.01) and ETh (12.15 vs. 9.93 mm; P < 0.01) than nonpubertal heifers. Taken together, OVA and ETh had positive effects (P < 0.01) on the onset of puberty and were suitable indicator traits of heifer sexual precocity in pasture management systems. However, selection for weight did not alter ovarian or endometrial development, or manifestation of puberty at 24 months of age. Among the growth traits studied, weaning weight and weight at puberty had significant positive effects on manifestation of first estrus.
Trichostatin A (TSA) induces histone hyperacetylation by inhibiting histone deacetylases and consequently increasing gene expression. The hypothesis was that TSA supplementation during the in vitro culture (IVC) of bovine embryos would increase the blastocyst rate, particularly in low-quality and female embryos. Oocytes were fertilised separately with X and Y spermatozoa and, 70 h after IVF, the IVC medium was supplemented with 5 nM and 15 nM TSA for 48 or 144 h. Incubation of female embryos with 5 nM and 15 nM TSA resulted in similar increases in acetylated histone H3K9 levels. However, to see comparable effects on acetylated histone H3K9 levels in male embryos, the culture medium needed to be supplemented with 15 nM TSA (as opposed to 5 nM TSA for female embryos). Treatment of male and female embryos with 5 nM TSA for 48 h or female embryos with 5 nM for 144 h had no effect on blastocyst rates, although 15 nM TSA compromised embryonic development. The terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay revealed increased apoptosis in female embryos treated with 5 nM TSA for 144 h, as well as in male and female embryos treated with 15 nM TSA for 48 h, but this increase in apoptosis was not observed in low-quality embryos. The results of the present study suggest that TSA treatment promotes histone hyperacetylation, but has no beneficial effects on the in vitro production of male and female bovine embryos during preimplantation development.
Previously, three distinct populations of putative primordial germ cells (PGCs), namely gonocytes, intermediate cells and pre-spermatogonia, have been described in the human foetal testis. According to our knowledge, these PGCs have not been studied in any other species. The aim of our study was to identify similar PGC populations in canine embryos. First, we develop a protocol for canine embryo isolation. Following our protocol, 15 canine embryos at 21-25 days of pregnancy were isolated by ovaryhysterectomy surgery. Our data indicate that dramatic changes occur in canine embryo development and PGCs specification between 21 to 25 days of gestation. At that moment, only two PGC populations with distinct morphology can be identified by histological analyses. Cell population 1 presented round nuclei with prominent nucleolus and a high nuclear to cytoplasm ratio, showing gonocyte morphology. Cell population 2 was often localized at the periphery of the testicular cords and presented typical features of PGC. Both germ cell populations were positively immunostained with anti-human OCT-4 antibody. However, at day 25, all cells of population 1 reacted positively with OCT-4, whereas in population 2, fewer cells were positive for this marker. These two PGCs populations present morphological features similar to gonocytes and intermediate cells from human foetal testis. It is expected that a population of pre-spermatogonia would be observed at later stages of canine foetus development. We also showed that anti-human OCT-4 antibody can be useful to identify canine PGC in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.