A novel probabilistic process neural network (PPNN) model is proposed for the multi-channel time-varying signal classification problems with ambiguity and randomness distribution characteristics. This model was constructed from an input time-varying signal layer, a probabilistic process neuron (PPN) hidden layer, a pattern layer, and a Softmax classifier. The number of nodes in the input layer is the same as the number of time-varying signal input channels, which can realize the overall input of the time-varying signal. The PPN hidden layer performs the spatio-temporal aggregation operations for time-varying input signals and probabilistic outputs. The connection weight functions from the input layer to the hidden layer are represented by the typical samples or cluster center functions in different pattern subsets of the sample set, which the prior knowledge of signal categories is implicitly expressed by the morphological distribution features and combinational relations. A pattern layer selectively summed to the output of the PPN hidden layer using the categorical attributes of the connection weight function vector. And the Softmax classifier implements the probabilistic classification of time-varying signals. PPNN has the advantages of fewer model parameters, suitable for modeling small samples and integrating prior knowledge of signal categories. This paper develops the specific learning algorithms which synthesize dynamic time warping, C-means clustering, and BP algorithm. The 12-lead electrocardiogram (ECG) signals for heart disease diagnosis were used for classification testing. The experimental results from 12-lead ECG signal across ten types of disease classification verify the effectiveness of the model and the proposed algorithm. INDEX TERMS Dynamic signal classification, Bayesian decision rules, probabilistic process neural network, training algorithm, ECG signal classification.
The electrocardiogram (ECG) signal is a kind of time-varying signal, which has the characteristics and difficulties of variability, instability, and noise. Aiming at that, this paper put forward a novel 13-layer deep dynamic neural network model (DDNN) for the ECG signal learning and classification. The proposed DDNN model is a dynamic hybrid deep learning model. It includes a wavelet block, a convolutional block, a recurrent block, and a classification block, which combines the learning property and classification mechanism of convolutional neural network for the large-scale data sets, the learning and memory ability of Long Short-Term Memory (LSTM) for time series, and the noise reduction and processing ability of wavelet basis for the signals to meet the requirement of the learning and classification of ECG signal characteristics. Sufficient experimental results show that the proposed model is feasible and effective in the electrocardiogram signal pattern classification.
Aiming at the imprecise and uncertain data and knowledge, this paper proposes a novel prior assumption by the rough set theory. The performance of the classical Bayesian classifier is improved through this study. We applied the operations of approximations to represent the imprecise knowledge accurately, and the concept of approximation quality is first applied in this method. Thus, this paper provides a novel rough set theory based prior probability in classical Bayesian classifier and the corresponding rough set prior Bayesian classifier. And we chose 18 public datasets to evaluate the performance of the proposed model compared with the classical Bayesian classifier and Bayesian classifier with Dirichlet prior assumption. Sufficient experimental results verified the effectiveness of the proposed method. The mainly impacts of our proposed method are: firstly, it provides a novel methodology which combines the rough set theory with the classical probability theory; secondly, it improves the accuracy of prior assumptions; thirdly, it provides an appropriate prior probability to the classical Bayesian classifier which can improve its performance only by improving the accuracy of prior assumption and without any effect to the likelihood probability; fourthly, the proposed method provides a novel and effective method to deal with the imprecise and uncertain data; last but not least, this methodology can be extended and applied to other concepts of classical probability theory, which providing a novel methodology to the probability theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.