In this paper, we present a new univariate flexible generator of distributions, namely, the odd Perks-G class. Some special models in this class are introduced. The quantile function (QFUN), ordinary and incomplete moments (MOMs), generating function (GFUN), moments of residual and reversed residual lifetimes (RLT), and four different types of entropy are all structural aspects of the proposed family that hold for any baseline model. Maximum likelihood (ML) and maximum product spacing (MPS) estimates of the model parameters are given. Bayesian estimates of the model parameters are obtained. We also present a novel log-location-scale regression model based on the odd Perks–Weibull distribution. Due to the significance of the odd Perks-G family and the survival discretization method, both are used to introduce the discrete odd Perks-G family, a novel discrete distribution class. Real-world data sets are used to emphasize the importance and applicability of the proposed models.
This article proposes a new lifetime-generated family of distributions called the sine-exponentiated Weibull-H (SEW-H) family, which is derived from two well-established families of distributions of entirely different nature: the sine-G (S-G) and the exponentiated Weibull-H (EW-H) families. Three new special models of this family include the sine-exponentiated Weibull exponential (SEWEx), the sine-exponentiated Weibull Rayleigh (SEWR) and sine-exponentiated Weibull Burr X (SEWBX) distributions. The useful expansions of the probability density function (pdf) and cumulative distribution function (cdf) are derived. Statistical properties are obtained, including quantiles (QU), moments (MO), incomplete MO (IMO), and order statistics (OS) are computed. Six numerous methods of estimation are produced to estimate the parameters: maximum likelihood (ML), least-square (LS), a maximum product of spacing (MPRSP), weighted LS (WLS), Cramér–von Mises (CRVM), and Anderson–Darling (AD). The performance of the estimation approaches is investigated using Monte Carlo simulations. The total factor productivity (TFP) of the United Kingdom food chain is an indication of the efficiency and competitiveness of the food sector in the United Kingdom. TFP growth suggests that the industry is becoming more efficient. If TFP of the food chain in the United Kingdom grows more rapidly than in other nations, it suggests that the sector is becoming more competitive. TFP, also known as multi-factor productivity in economic theory, estimates the fraction of output that cannot be explained by traditionally measured inputs of labor and capital employed in production. In this paper, we use five real datasets to show the relevance and flexibility of the suggested family. The first dataset represents the United Kingdom food chain from 2000 to 2019, whereas the second dataset represents the food and drink wholesaling in the United Kingdom from 2000 to 2019 as one factor of FTP; the third dataset contains the tensile strength of single carbon fibers (in GPa); the fourth dataset is often called the breaking stress of carbon fiber dataset; the fifth dataset represents the TFP growth of agricultural production for thirty-seven African countries from 2001–2010. The new suggested distribution is very flexible and it outperforms many known distributions.
The Truncated Cauchy Power Weibull-G class is presented as a new family of distributions. Unique models for this family are presented in this paper. The statistical aspects of the family are explored, including the expansion of the density function, moments, incomplete moments (IMOs), residual life and reversed residual life functions, and entropy. The maximum likelihood (ML) and Bayesian estimations are developed based on the Type-II censored sample. The properties of Bayes estimators of the parameters are studied under different loss functions (squared error loss function and LINEX loss function). To create Markov-chain Monte Carlo samples from the posterior density, the Metropolis–Hasting technique was used with posterior density. Using non-informative and informative priors, a full simulation technique was carried out. The maximum likelihood estimator was compared to the Bayesian estimators using Monte Carlo simulation. To compare the performances of the suggested estimators, a simulation study was carried out. Real-world data sets, such as strength measured in GPA for single carbon fibers and impregnated 1000-carbon fiber tows, maximum stress per cycle at 31,000 psi, and COVID-19 data were used to demonstrate the relevance and flexibility of the suggested method. The suggested models are then compared to comparable models such as the Marshall–Olkin alpha power exponential, the extended odd Weibull exponential, the Weibull–Rayleigh, the Weibull–Lomax, and the exponential Lomax distributions.
In this paper, acceptance sampling plans (ASPs) are proposed for the new Weibull-Pareto distribution (NWPD) percentiles assuming truncated life tests at a pre-determined time. The minimum sample sizes essential to assert the specified percentile are calculated for a given consumer’s risk. The operating characteristic function values of the developed ASPs and producer’s risk are provided. A real data set related to the breaking stress of carbon fibers data are presented for illustration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.