Shallow burial, very close coal seam groups, and spontaneous combustion are typical characteristics of most coal seams in the Shendong mining area, China. With the continuous extension of the production level of various mines, some mining areas have gradually shown complex production conditions including multiple types of fire forms such as those in coal fields, small kilns, and multilayer mined-out and hidden high-temperature areas, resulting in fire control difficultly and posing threats to safety. With the aim of limiting the above problems, in this work, the liquid carbon dioxide fire prevention technology is focused on. Phase change and migration law of CO2 in the goaf are studied. Through the study on the influence of the use of liquid CO2 on the cooling law of high-temperature coal and on its spontaneous combustion characteristics and through thermal analysis experiments, it was observed that the porosity of loose coal has a significant impact on the cooling effect of carbon dioxide. Moreover, it was emphasized that the higher the CO2 concentration, the higher the rise in temperature of coal oxidation, and the increase of CO2 concentration was able to affect apparent activation of coal oxidation, leading to a theoretical basis to explain the effect of CO2 in inhibiting coal spontaneous combustion. The utilization of Fluent numerical modeling allowed us to simulate the diffusion radius of liquid CO2 injected into the goaf, to study the effective inerting radius of liquid CO2 on the left coal in the goaf. After comprehensive analysis of experiments and numerical simulations, appropriate equipment and process flow are selected and designed. Taking the Huojitujing well of Daliuta Coal Mine in Shendong mining area as the industrial test site, an intelligent pressure-holding transportation of liquid CO2 in the 1000 m transportation pipeline was developed. The surface liquid CO2 infusion capacity was 20 t/h, and the pressure-holding interval at the end of the transportation pipeline was determined to be 1.0–2.3 MPa. The maximum diffusion radius of the mined-out area is 300 m under the effect of positive air flow and self-expansion and diffusion of CO2 gas in the roadway. Under the influence of reverse wind flow and self-expansion and diffusion, the diffusion radius of the goaf is 150 m, and the maximum storage time of gaseous CO2 in the goaf is 27 h. Liquid CO2 was injected into the area with relevant presence of CO, an indicator of possible fires. Practice has proved that, after 65 hours and two perfusion processes, the CO concentration dropped from 790 ppm to 41 ppm, which indicates that liquid CO2 has a significant effect on fire prevention.
In this article, a series of experiments have been carried out to study the spontaneous combustion and oxidation mechanism of coal after water immersion and investigate its tendency to spontaneous combustion, analyze the difficulty of spontaneous combustion of coal samples under different water immersion conditions, and establish a kinetic model of water immersion coal oxidation (taking the Bulianta 12# coal as a case study). They rely on physical oxidation adsorption, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry, and oil bath heating. SEM has been used to analyze the characteristics of coal pore structure under different water immersion conditions (water-saturated coal samples under different water loss conditions until the coal samples are completely dried); FTIR served to investigate the characteristics of the molecular chemical structure of the coal surface before and after the coal is immersed in water. Through programmed temperature oxidation experiments combined with FTIR analyses and gas chromatographic (GC) analysis of gaseous products, it has been possible to study the changes of molecular structure and gas products on the surface of coal samples at different temperatures and water immersion conditions. The oxidation reaction rate of the 12# coal samples of Shendong Mine’s Bulianta Mine under different water content conditions during the spontaneous combustion process has been quantitatively studied. The difficulty of spontaneous combustion of coal samples has been correspondingly addressed. A kinetic model from the perspective of oxygen consumption has been proposed. Thermogravimetry-differential scanning calorimetry (TG-DSC) has been used to analyze and study the exothermal oxidation process before and after coal immersion. From the perspective of the exothermic intensity of the coal-oxygen reaction, an oxidation kinetic model for immersed coal samples has been developed to qualitatively determine its spontaneous combustion tendency. Results have shown that the increase in the specific surface area increases the risk of spontaneous combustion, and coal samples after soaking and drying have a stronger tendency to spontaneous combustion than raw coal. The moisture content of the coal sample leading to the easiest ignition conditions is 16.05%. Regardless of the moisture content, the critical temperature is maintained at 65–75°C, and the temperature of the left coal in the goaf should be prevented from exceeding this critical value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.