We construct vertex representations of quantum affine algebras of ADE type, which were first introduced in greater generality by Drinfeld and Jimbo. The limiting special case of our construction is the untwisted vertex representation of affine Lie algebras of Frenkel-Kac and Segal. Our representation is given by means of a new type of vertex operator corresponding to the simple roots and satisfying the defining relations. In the case of the quantum affine algebra of type A, we introduce vertex operators corresponding to all the roots and determine their commutation relations. This provides an analogue of a Chevalley basis of the affine Lie algebra 2t(n) in the basic representation.
It is well-known that the Gauss decomposition of the generator matrix in the R-matrix presentation of the Yangian in type A yields generators of its Drinfeld presentation. Defining relations between these generators are known in an explicit form thus providing an isomorphism between the presentations. It has been an open problem since the pioneering work of Drinfeld to extend this result to the remaining types. We give a solution for the classical types B, C and D by constructing an explicit isomorphism between the R-matrix and Drinfeld presentations of the Yangian. It is based on an embedding theorem which allows us to consider the Yangian of rank n − 1 as a subalgebra of the Yangian of rank n of the same type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.