Companion cropping with wheat (Triticum aestivum L.) can enhance watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] wilt disease resistance against Fusarium oxysporum f. sp. niveum. However, the mechanism of resistance induction remains unknown. In this study, the effects of microbial community dynamics and the interactions between wheat and watermelon plants, particularly the effect of wheat root exudates on watermelon resistance against F. oxysporum f. sp. niveum, were examined using a plant-soil feedback trial and plant tissue culture approach. The plant-soil feedback trial showed that treating watermelon with soil from wheat/watermelon companion cropping decreased watermelon wilt disease incidence and severity, increased lignin biosynthesis- and defense-related gene expression, and increased β-1,3-glucanase activity in watermelon roots. Furthermore, soil microbes can contribute to increasing disease resistance in watermelon plants. Tissue culture experiments showed that both exogenous addition of wheat root exudates and companion cropping with wheat increased host defense gene expression, lignin and total phenols, and increased β-1,3-glucanase activity in watermelon roots. In conclusion, both root exudates from wheat and the related soil microorganisms in a wheat/watermelon companion cropping system played critical roles in enhancing resistance to watermelon wilt disease induced by F. oxysporum f. sp. niveum.
Intercropping can achieve sustainable agricultural development by increasing plant diversity. In this study, we investigated the effects of tomato monoculture and tomato/potato-onion intercropping systems on tomato seedling growth and changes of soil microbial communities in greenhouse conditions. Results showed that the intercropping with potato-onion increased tomato seedling biomass. Compared with monoculture system, the alpha diversity of soil bacterial and fungal communities, beta diversity and abundance of bacterial community were increased in the intercropping system. Nevertheless, the beta-diversity and abundance of fungal community had no difference between the intercropping and monoculture systems. The relative abundances of some taxa (i.e., Acidobacteria-Subgroup-6, Arthrobacter, Bacillus, Pseudomonas) and several OTUs with the potential to promote plant growth were increased, while the relative abundances of some potential plant pathogens (i.e., Cladosporium) were decreased in the intercropping system. Redundancy analysis indicated that bacterial community structure was significantly influenced by soil organic carbon and pH, the fungal community structure was related to changes in soil organic carbon and available phosphorus. Overall, our results suggested that the tomato/potato-onion intercropping system altered soil microbial communities and improved the soil environment, which may be the main factor in promoting tomato growth.
Sub-optimal temperatures can adversely affect tomato (Solanum lycopersicum) growth, and K+ plays an important role in the cold tolerance of plants. However, gene expression and K+ uptake in tomato in response to sub-optimal temperatures are still not very clear. To address these questions, one cold-tolerant tomato cultivar, Dongnong 722 (T722), and one cold-sensitive cultivar, Dongnong 708 (S708), were exposed to sub-optimal (15/10 °C) and normal temperatures (25/18 °C), and the differences in growth, K+ uptake characteristics and global gene expressions were investigated. The results showed that compared to S708, T722 exhibited lower reduction in plant growth rate, the whole plant K+ amount and K+ net uptake rate, and T722 also had higher peroxidase activity and lower K+ efflux rate under sub-optimal temperature conditions. RNA-seq analysis showed that a total of 1476 and 2188 differentially expressed genes (DEGs) responding to sub-optimal temperature were identified in S708 and T722 roots, respectively. Functional classification revealed that most DEGs were involved in “plant hormone signal transduction”, “phenylpropanoid biosynthesis”, “sulfur metabolism” and “cytochrome P450”. The genes that were significantly up-regulated only in T722 were involved in the “phenylpropanoid biosynthesis” and “plant hormone signal transduction” pathways. Moreover, we also found that sub-optimal temperature inhibited the expression of gene coding for K+ transporter SIHAK5 in both cultivars, but decreased the expression of gene coding for K+ channel AKT1 only in S708. Overall, our results revealed the cold response genes in tomato roots, and provided a foundation for further investigation of mechanism involved in K+ uptake in tomato under sub-optimal temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.