The experiments were conducted for three consecutive years across 14 locations using nine non-waxy proso millet genotypes and 16 locations using seven waxy proso millet genotypes in China. The objectives of this study were to analyze yield stability and adaptability of proso millets and to evaluate the discrimination and representativeness of locations by Analysis of variance (ANOVA) and GGE biplot methods. Grain yields of proso millet genotypes were significantly influenced by environment (E), genotype (G), and their interaction (G×E) (P<0.1%). G×E interaction effect was six times higher than G effect in non-waxy group and seven times in waxy group. N04-339 in non-waxy and NM6 in waxy showed higher grain yields and stability compared with other genotypes. Also, NM9 a non-waxy showed higher adaptability in six locations and 90322-2-3 a waxy in eleven locations. For non-waxy, Dalat, Inner Mongolia (E2) and Wuzhai, Shanxi (E5) were the best sites among all the locations for maximizing the variance among candidate cultivars, and Yanchi, Ningxia (E10) had the best representativeness. Wuzhai, Shanxi (e9) and Yanchi, Ningxia (e14) were the best representative locations, and Baicheng, Jilin (e2) was best discriminating locations than others for waxy genotypes. Based on our results, E10 and e14 have enhanced efficiency and accuracy for non-waxy genotypes and waxy genotypes selection, respectively in national regional test of proso millet varieties.
Abscisic acid (ABA) plays a crucial role in response to abiotic stress as important small molecules in regulating metabolism. This study aimed to evaluate the ability of foliar spraying ABA to regulate growth quality at rice seedling stage under salt stress. Results demonstrated that salt stress strongly reduced all the growth parameters of two rice seedlings (‘Chaoyouqianhao’ and ‘Huanghuazhan’), caused prominent decrease in the levels of photosynthetic pigments (mainly in Huanghuazhan), photosynthesis and fluorescence parameters. Salinity treatment increased the concentration of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in roots, whereas significant decreased H2O2 was found in leaves of Huanghuazhan. Additionally, salinity triggered high Na+ content particularly in leaves and enhanced catalase (CAT) activities, ascorbate peroxidase (APX) and peroxidase (POD) activities of the two rice seedlings. Nevertheless, salinity-induced increased root ascorbic acid (AsA) and glutathione (GSH) levels while decreased in leaves, which depended on treatment time. Conversely, ABA application partially or completely mitigated salinity toxicity on the seedlings. ABA could reverse most of the changed physiological parameters triggered by salt stress. Specially, ABA treatment improved antioxidant enzyme levels and significantly reduced the Na+ content of two varieties as well as increased the K+, Mg2+ and Ca2+ content in leaves and roots. ABA treatment increased the hormone contents of 1-aminocclopropane carboxylic acid (ACC), trans-zeatin (TZ), N6-isopentyladenosine (IPA), Indole-3-acetic acid (IAA), and ABA in leaves of two rice varieties under salt stress. It is suggested that ABA was beneficial to protect membrane lipid peroxidation, the modulation of antioxidant defense systems and endogenous hormonal balance with imposition to salt stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.