In the field of preference-based evolutionary multiobjective optimization, optimization algorithms are required to search for the Pareto optimal solutions preferred by the decision maker (DM). The reference point is a type of techniques that effectively describe the preferences of DM. So far, the reference point is either static or interactive with the evolutionary process. However, the existing reference point techniques do not cover all application scenarios. A novel case, i.e., the reference point changes over time due to the environment change, has not been considered. This paper focuses on the multiobjective optimization problems with dynamic preferences of the DM. First, we propose a change model of the reference point to simulate the change of the preference by the DM over time. Then, a dynamic preference-based multiobjective evolutionary algorithm framework with a clonal selection algorithm (ĝa-NSCSA) and a genetic algorithm (ĝa-NSGA-II) is designed to solve such kind of optimization problems. In addition, in terms of practical applications, the experiments on the portfolio optimization problems with the dynamic reference point model are tested. Experimental results on the benchmark problems and the practical applications show that ĝa-NSCSA exhibits better performance among the compared optimization algorithms.
In the field of preference-based evolutionary multiobjective optimization, optimization algorithms are required to search for the Pareto optimal solutions preferred by the decision-maker (DM). The reference point is a type of techniques that effectively describe the preferences of DM. So far, the reference point is either static or interactive with the evolutionary process. However, the existing reference point techniques do not cover all application scenarios. A novel case, i.e., the reference point changes over time due to the environment change, has not been considered. This paper focuses on the multiobjective optimization problems with dynamic preferences of the DM. First, we propose a change model of the reference point to simulate the change of the preference by the DM over time. Then, a dynamic preference-based multiobjective evolutionary algorithm framework with a clonal selection algorithm (ĝa-NSCSA) and a genetic algorithm (ĝa-NSGA-II) is designed to solve such kind of optimization problems. In addition, in terms of practical applications, the experiments on the portfolio optimization problems with the dynamic reference point model are tested. Experimental results on the benchmark problems and the practical applications show that ĝa-NSCSA exhibits better performance among the compared optimization algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.