Bacterial communities in the rhizosphere play an important role in sustaining plant growth and the health of diverse soils. Recent studies have demonstrated that microbial keystone taxa in the rhizosphere microbial community are extremely critical for the suppression of diseases. However, the mechanisms involved in disease suppression by keystone species remain unclear. The present study assessed the effects of three Pseudomonas strains, which were identified as keystone species in our previous study, on the growth performance and root-associated bacterial community of tobacco plants. A high relative abundance of Ralstonia was found in the non-inoculated group, while a large Azospira population was observed in all groups inoculated with the three Pseudomonas strains. Correspondingly, the activities of the defense-related enzymes and the expression levels of the defense signaling marker genes of the plant were increased after inoculation with the Pseudomonas strains. Moreover, the correlation analyses showed that the relative abundance of Azospira, the activity of superoxide dismutase, catalase, and polyphenol oxidase, and the expression of H1N1, ACC Oxidase, and PR1 a/c had a significantly negative (p<0.05) relationship with the abundance of Ralstonia. This further revealed that the keystone species, such as Pseudomonas spp., can suppress bacterial wilt disease by enhancing the systemic resistance of tobacco plants.
Bacterial wilt, caused by the Ralstonia solanacearum, can infect several economically important crops. However, the management strategies available to control this disease are limited. Plant growth-promoting rhizobacteria (PGPR) have been considered promising biocontrol agents. In this study, Bacillus amyloliquefaciens strain Cas02 was isolated from the rhizosphere soil of healthy tobacco plants and evaluated for its effect on plant growth promotion and bacterial wilt suppression. Strain Cas02 exhibited several growth-promoting-related features including siderophore production, cellulase activity, protease activity, ammonia production and catalase activity. Moreover, strain Cas02 showed a significant inhibitory growth effect on R. solanacearum, and its active substances were separated and identified to be macrolactin A and macrolactin W by HPLC-DAD-ESI-MS/MS. Both greenhouse and field experiments demonstrated a good performance of Cas02 in plant growth promotion and bacterial wilt suppression. To explore the underlying genetic mechanisms, complete genome sequencing was performed and the gene clusters responsible for antibacterial metabolites expression were identified. Overall, these findings suggest that the strain Cas02 could be a potential biocontrol agent in bacterial wilt management and a source of antimicrobial compounds for further exploitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.