This article addresses MHD nanofluid flow induced by stretched surface. Heat transport features are elaborated by implementing double diffusive stratification. Chemically reactive species is implemented in order to explore the properties of nanofluid through Brownian motion and thermophoresis. Activation energy concept is utilized for nano liquid. Further zero mass flux is assumed at the sheet’s surface for better and high accuracy of the out-turn. Trasnformations are used to reconstruct the partial differential equations into ordinary differential equations. Homotopy analysis method is utilized to obtain the solution. Physical features like flow, heat and mass are elaborated through graphs. Thermal stratified parameter reduces the temperature as well as concentration profile. Also decay in concentration field is noticed for larger reaction rate parameter. Both temperature and concentration grows for Thermophoresis parameter. To check the heat transfer rate, graphical exposition of Nusselt number are also discussed and interpret. It is noticed that amount of heat transfer decreases with the increment in Hartmann number. Numerical results shows that drag force increased for enlarged Hartmann number.
In this article, we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations. Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine. Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes, numerical experiments and CPU time-methodology. Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods. Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples. Numerical test examples, dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.
In this research article, we propose efficient numerical iterative methods for estimating roots of interval-valued trapezoidal fuzzy nonlinear equations. Convergence analysis proves that the order of convergence of numerical schemes is 3. Some real-life applications are considered from optimization as numerical test problems which contain interval-valued trapezoidal fuzzy quantities in parametric form. Numerical illustrations are given to show the dominance efficiency of the newly constructed iterative schemes as compared to existing methods in literature.
In this study, we construct a family of single root finding method of optimal order four and then generalize this family for estimating of all roots of non-linear equation simultaneously. Convergence analysis proves that the local order of convergence is four in case of single root finding iterative method and six for simultaneous determination of all roots of non-linear equation. Some non-linear equations are taken from physics, chemistry and engineering to present the performance and efficiency of the newly constructed method. Some real world applications are taken from fluid mechanics, i.e., fluid permeability in biogels and biomedical engineering which includes blood Rheology-Model which as an intermediate result give some nonlinear equations. These non-linear equations are then solved using newly developed simultaneous iterative schemes. Newly developed simultaneous iterative schemes reach to exact values on initial guessed values within given tolerance, using very less number of function evaluations in each step. Local convergence order of single root finding method is computed using CAS-Maple. Local computational order of convergence, CPU-time, absolute residuals errors are calculated to elaborate the efficiency, robustness and authentication of the iterative simultaneous method in its domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.