Objectives-Children and adults spend large portions of their days in front of screens. Our hypothesis was that both children and adults would expend more calories and move more while playing activity-promoting video games compared to sedentary video games.Study Design-In this single-group study, twenty-two healthy children (12 ± 2 years, 11 M, 11 F) and 20 adults (34 ± 11 years, 10 M, 10 F) were recruited. Energy expenditure and physical activity were measured while participants were resting, standing, watching television seated, sitting and playing a traditional sedentary video game, and while playing an activity-promoting video game (Nintendo® Wii™ Boxing). Physical activity was measured using accelerometers and energy expenditure was measured using an indirect calorimeter.Results-Energy expenditure increased significantly above all activities when children or adults played Nintendo® Wii™ (mean increase over resting, 189 ± 63 kcal/hr, p < 0.001, and 148 ± 71 kcal/hr, p < 0.001, respectively). Upon examination of movement using accelerometry, children moved significantly more than adults (55 ± 5 AAU and 23 ± 2 AAU, respectively, p < 0.001) while playing Nintendo® Wii™.Conclusions-Activity-promoting video games have the potential to increase movement and energy expenditure in children and adults.
We examined the hypothesis that elementary school-age children will be more physically active while attending school in a novel, activity-permissive school environment compared to their traditional school environment. Twentyfour children were monitored with a single-triaxial accelerometer worn on the thigh. The students attended school in three different environments: traditional school with chairs and desks, an activity-permissive environment, and finally their traditional school with desks which encouraged standing. Data from the school children were compared with another group of age-matched children (n = 16) whose physical activity was monitored during summer vacation. When children attended school in their traditional environment, they moved an average (mean ± s.d.) of 71 ± 0.4 m/s 2 . When the children attended school in the activity-permissive environment, they moved an average of 115 ± 3 m/s 2 . The children moved 71 ± 0.7 m/s 2 while attending the traditional school with standing desks. Children moved significantly more while attending school in the activity-permissive environment compared to the amount that they moved in either of the traditional school environments (P < 0.0001 for both). Comparing children's activity while they were on summer vacation (113 ± 8 m/s 2 ) to school-bound children in their traditional environment showed significantly more activity for the children on summer vacation (P < 0.0001). The school children in the activity-permissive environment were as active as children on summer vacation. Children will move more in an activity-permissive environment. Strategies to increase the activity of school children may involve re-designing the school itself.
Background-As childhood obesity has reached epidemic proportions globally, how best to promote active children is undefined. One approach has been through the use of pedometers. In the present study we investigated the accuracy of measuring walking steps with commercially available pedometers and an Accelerometer-based Step-counter in normal and overweight children. Our primary hypothesis was that commercially available pedometers are not an accurate measure of walking steps in normal and overweight children whilst walking. Our secondary hypothesis was that the Accelerometer-based Step-counter provides an accurate measure of walking steps in normal and overweight children.
Background-Screen time continues to be a major contributing factor to sedentariness in children. There have been more creative approaches to increase physical over the last few years. One approach has been through the use of video games. In the present study we investigated the effect of television watching and the use of activity-promoting video games on energy expenditure and movement in lean and obese children. Our primary hypothesis was that energy expenditure and movement decreases while watching television, in lean and obese children. Our secondary hypothesis was that energy expenditure and movement increases when playing the same game with an activity-promoting video game console compared to a sedentary video game console, in lean and obese children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.