Recently, convolutional neural network-based methods have been used extensively for roof type classification on images taken from space. The most important problem with classification processes using these methods is that it requires a large amount of training data. Usually, one or a few images are enough for a human to recognise an object. The one-shot learning approach, like the human brain, aims to effect learning about object categories with just one or a few training examples per class, rather than using huge amounts of data. In this study, roof-type classification was carried out with a few training examples using the one-time learning approach and the so-called Siamese neural network method. The images used for training were artificially produced due to the difficulty of finding roof data. A data set consisting of real roof images was used for the test. The test and training data set consisted of three different types: flat, gable and hip. Finally, a convolutional neural network-based model and a Siamese neural network model were trained with the same data set and the test results were compared with each other. When testing the Siamese neural network model, which was trained with artificially produced images, with real roof images, an average classification success of 66% was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.