Early-life stress is associated with depression and metabolic abnormalities that increase the risk of cardiovascular disease and diabetes. Such associations could be due to increased glucocorticoid levels. Periodic maternal separation in the neonate and rearing in social isolation are potent stressors that increase hypothalamus-pituitary-adrenal axis activity. Moreover, social isolation promotes feed intake and body weight gain in rats subjected to periodic maternal separation; however, its effects on metabolic risks have not been described. In the present study, we evaluated whether periodic maternal separation, social isolation rearing, and a combination of these two stressors (periodic maternal separation + social isolation rearing) impair glucose homeostasis and its relation to the hypothalamus-pituitary-adrenal axis and depressive-like behavior. Periodic maternal separation increased basal corticosterone levels, induced a passive coping strategy in the forced swimming test, and was associated with a mild (24%) increase in fasting glucose, insulin resistance, and dyslipidemia. Rearing in social isolation increased stress reactivity in comparison to both controls and in combination with periodic maternal separation, without affecting the coping strategy associated with the forced swimming test. However, social isolation also increased body weight gain, fasting glucose (120%), and insulin levels in rats subjected to periodic maternal separation. Correlation analyses showed that stress-induced effects on coping strategy on the forced swimming test (but not on metabolic risk markers) are associated with basal corticosterone levels. These findings suggest that maternal separation and postweaning social isolation affect stress and metabolic vulnerability differentially and that early-life stress-related effects on metabolism are not directly dependent on glucocorticoid levels. In conclusion, our study supports the cumulative stress hypothesis, which suggests that metabolic risk markers arise when vulnerable individuals are exposed to social challenges later in life.
Adverse early life experience decreases adult hippocampal neurogenesis and results in increased vulnerability to neuropsychiatric disorders. Despite that the effects of postnatal stress on neurogenesis have been widely studied in adult individuals, few efforts have been done to evaluate its immediate effects on the developing hippocampus. Moreover, it is not clear whether postnatal stress causes a differential impact in hippocampus development in male and female neonates that could be related to emotional deficits in adulthood. It has been proposed that the long term effects of early stress exposure rise from a persistent HPA axis activation during sensitive time windows; nevertheless the exact mechanisms and mediators remain unknown. Here, we summarize the immediate and late effects of early life stress on hippocampal neurogenesis in male and female rat pups, compare its later consequences in emotionality, and highlight some relevant mediator peptides that could be potentially involved in programming.
Environmental enrichment (EE) promotes behavioral recovery after experimental traumatic brain injury (TBI). However, the chronic rehabilitation provided in the laboratory is not analogous to the clinic where physiotherapy is typically limited. Moreover, females make up approximately 40% of the clinical TBI population, yet they are seldom studied in brain trauma. Hence, the goal of this study was to test the hypothesis that abbreviated EE would confer neurobehavioral, cognitive, and histological benefits in brain injured female rats. Anesthetized rats received a cortical impact of moderate severity (2.8 mm tissue deformation at 4 m/s) or sham injury and then were randomly assigned to groups receiving standard (STD) housing or 4-hr, 6-hr, or 24-hr of EE daily. Motor function (beam-balance/walk and rotarod) was assessed on post-operative days 1-5 and every other day from 1-19, respectively. Spatial learning/memory (Morris water maze) was evaluated on days 14-19, and cortical lesion volume was quantified on day 21. No statistical differences were appreciated among the sham controls in any assessment and thus the data were pooled. All EE conditions improved motor function and memory retention, but only 6-hr and 24-hr enhanced spatial learning relative to STD (p < 0.05). Moreover, EE, regardless of duration reduced cortical lesion volume (p < 0.05). These data confirm that abbreviated EE confers robust neurobehavioral, cognitive, and histological benefits in TBI female rats, which supports the hypothesis and strengthens the utility of EE as a pre-clinical model of neurorehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.