In the current study, an artificial neural network (ANN) and multiple linear regressions (MLR) have been used to develop predictive models for the estimation of molecular diffusion coefficients of 1252 polar and non-polar binary gases at multiple pressures over a wide range of temperatures and substances. The quality and reliability of each method were estimated in terms of the correlation coefficient (R), mean squared errors (MSE), root mean squared error (RMSE), and in terms of external validation coefficients (Q2ext).
The comparison between the artificial neural network (ANN) and the multiple linear regressions (MLR) revealed that the neural network models showed a good predicting ability with lower errors (the roots of the mean squared errors in the total database were 0.1400 for ANN1 and 0.1300 for ANN2), and (root mean squared errors in the total databases were 0.5172 for MLR1 and 0.5000 for MLR2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.