This paper concerns the ultrasonic characterization of human cancellous bone samples by solving the inverse problem using experimental transmitted signals. The ultrasonic propagation in cancellous bone is modeled using the Biot theory modified by the Johnson et al. model for viscous exchange between fluid and structure. The sensitivity of the Young modulus and the Poisson ratio of the skeletal frame is studied showing their effect on the fast and slow wave forms. The inverse problem is solved numerically by the least squares method. Five parameters are inverted: the porosity, tortuosity, viscous characteristic length, Young modulus, and Poisson ratio of the skeletal frame. The minimization of the discrepancy between experiment and theory is made in the time domain. The inverse problem is shown to be well posed, and its solution to be unique. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.
An acoustic transmissivity method is proposed for measuring flow resistivity of porous materials having rigid frame. Flow resistivity of porous material is defined as the ratio between the pressure difference across a sample and the velocity of flow of air through that sample per unit cube. The proposed method is based on a temporal model of the direct and inverse scattering problem for the diffusion of transient low-frequency waves in a homogeneous isotropic slab of porous material having a rigid frame. The transmission scattering operator for a slab of porous material is derived from the response of the medium to an incident acoustic pulse. The flow resistivity is determined from the solution of the inverse problem. The minimization between experiment and theory is made in the time domain. Tests are performed using industrial plastic foams. Experimental and numerical results, and prospects are discussed.
An acoustic reflectivity method is proposed for measuring flow resistivity of porous materials having rigid frame. The flow resistivity of porous material is defined as the ratio between the pressure difference across a sample and the velocity of flow of air through that sample per unit cube. It is important as one of the several parameters required by acoustical theory to characterize porous materials like plastic foams and fibrous or granular materials. The proposed method is based on a temporal model of the direct and inverse scattering problem for the diffusion of transient low-frequency waves in a homogeneous isotropic slab of porous material having a rigid frame. This time domain model of wave propagation was initially introduced by the authors ͓Z.E.A. Fellah and C. Depollier, J. Acoust. Soc. Am. 107, 683 ͑2000͔͒. The viscous losses of the medium are described by the model devised by Johnson et al. ͓D. L. Johnson, J. Koplik, and R. Dashen, J. Fluid. Mech.176, 379 ͑1987͔͒. Reflection and transmission scattering operators for a slab of porous material are derived from the responses of the medium to an incident acoustic pulse. The flow resistivity is determined from the expression of the reflection operator. Experimental and numerical validation results of this method are presented. A guide ͑pipe͒ is used in the experiment for obtaining a plane wave. This method has the advantage of being simple, rapid, and efficient.
A frequency domain method dedicated to the analytic recovery of the four relevant parameters of macroscopically homogeneous rigid frame porous materials, e.g., plastic foams, at the high frequency range of the Johnson-Champoux-Allard model is developed and presented. The reconstructions appeal to experimental data concerning time domain measurements of the ultrasonic fields reflected and transmitted by a plate of the material at normal incidence. The effective density and bulk modulus of the material are first reconstructed from the frequency domain reflection and transmission coefficients. From the latter, the porosity, tortuosity, and thermal and viscous characteristic lengths are recovered. In a sense, the method presented herein is quite similar in the ultrasonic range, but also quite complementary, to the method developed by Panneton and Olny [J. Acoust. Soc. Am. 119, 2027-2040 (2006); 123, 814-824 (2008)] at low frequency, which appeal to experimental data measured in an impedance tube.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.