The signaling/oncogenic activity of beta-catenin can be repressed by activation of the vitamin D receptor (VDR). Conversely, high levels of beta-catenin can potentiate the transcriptional activity of 1,25-dihydroxyvitamin D3 (1,25D). We show here that the effects of beta-catenin on VDR activity are due to interaction between the activator function-2 (AF-2) domain of the VDR and C terminus of beta-catenin. Acetylation of the beta-catenin C terminus differentially regulates its ability to activate TCF or VDR-regulated promoters. Mutation of a specific residue in the AF-2 domain, which renders the VDR trancriptionally inactive in the context of classical coactivators, still allows interaction with beta-catenin and ligand-dependent activation of VDRE-containing promoters. VDR antagonists, which block the VDRE-directed activity of the VDR and recruitment of classical coactivators, do allow VDR to interact with beta-catenin, which suggests that these and perhaps other ligands would permit those functions of the VDR that involve beta-catenin interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.