Clickbait is an elusive challenge with the prevalence of social media such as Facebook and Twitter that misleads the readers while clicking on headlines. Limited annotated data makes it onerous to design an accurate clickbait identification system. The authors address this problem by purposing deep learning-based architecture with external knowledge which trains on social media post and descriptions. The pre-trained ELMO and BERT model obtains the sentence level contextual feature as knowledge; moreover, the LSTM layer helps to prevail the word level contextual feature. Training has done at different experiments (model with EMLO, model with BERT) with different regularization techniques such as dropout, early stopping, and finetuning. Forward context-aware clickbait tweet identification system (FCCTI) with BERT finetuning and model with ELMO using glove pre-trained embedding is the best model and achieves a clickbait identification accuracy of 0.847, improving on the previous baseline for this task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.