Recently, carbon nanomaterial-supported plasmonic nanocrystals used as high-performance surface-enhanced Raman scattering (SERS) substrates have attracted increasing attention due to their ultra-high sensitivity of detection. However, most of the work focuses on the design of 2-D planar substrates with traditional plasmonic structures, such as nanoparticles, nanorods, nanowires, and so forth. Here, we report a novel strategy for the preparation of high-yield Au nanohydrangeas on three-dimensional porous polydopamine (PDA)/polyvinyl alcohol (PVA)/carbon nanotube (CNT) foams. The structures and growth mechanisms of these specific Au nanocrystals are systematically investigated. PDA plays the role of both a reducing agent as well as an anchoring site for Au nanohydrangeas’ growth. We also show that the ratio of surfactant KBr to the gold precursor (HAuCl4) is key to obtain these structures in a manner of high production. Moreover, the substrate of the CNT foam–Au nanohydrangea hybrid can be employed as SERS sensors and can detect the analytes down to 10–9 M.
Uniform deposition of metal nanoparticles (NPs) on carbon-based substrates is of importance for practical applications as sensors, catalysts, devices, and so forth. Here, we report a one-step wet-chemistry approach that realizes the highly uniform decoration of gold NPs (Au NPs) onto carbon nanotube (CNT) sheets. We first use plasma treatment to make the CNT bundles separated, namely, applying the “debundling” effect onto the film. We also reveal that dimethyl sulfoxide (DMSO) not only promotes the CNT debundling, providing more interstitial space for gold deposition, but also attracts the gold cluster nucleation due to molecule interactions. The reproducibility of surface-enhanced Raman scattering (SERS) signals from this well-engineered CNT/Au NPs substrate is significantly enhanced, as the relative standard deviation from G and D peaks are decreased from 18.8 and 21.3% to 5.6 and 6.2%, respectively. We have fabricated a flexible SERS substrate based on Au NPs/CNT hybrid, which can effectively detect the analyte Rhodamine 6G (R6G) at a concentration as low as 1 × 10–8 M.
Rhodium (Rh) catalyst has played an indispensable role in many important industrial and technological applications due to its unique and valuable properties. Currently, Rh is considered as a strategic or critical metal as the scarce high-quality purity can only be supplemented by refining coarse ores with low content (2–10 ppm) and is far from meeting the fast-growing market demand. Nowadays, exploring new prospects has already become an urgent issue because of the gradual depletion of Rh resources, incidental pressure on environmental protection, and high market prices. Since waste catalyst materials, industrial equipment, and electronic instruments contain Rh with a higher concentration than that of natural minerals, recovering Rh from scrap not only offers an additional source to satisfy market demand but also reduces the risk of ore over-exploitation. Therefore, the recovery of Rh-based catalysts from scrap is of great significance. This review provides an overview of the Rh metal recovery from spent catalysts. The characteristics, advantages and disadvantages of several current recovery processes, including pyrometallurgy, hydrometallurgy, and biosorption technology, are presented and compared. Among them, the hydrometallurgical process is commonly used for Rh recovery from auto catalysts due to its technological simplicity, low cost, and short processing time, but the overall recovery rate is low due to its high remnant Rh within the insoluble residue and the unstable leaching. In contrast, higher Rh recovery and less effluent discharge can be ensured by a pyrometallurgical process which therefore is widely employed in industry to extract precious metals from spent catalysts. However, the related procedure is quite complex, leading to an expensive hardware investment, high energy consumption, long recovery cycles, and inevitable difficulties in controlling contamination in practice. Compared to conventional recovery methods, the biosorption process is considered to be a cost-effective biological route for Rh recovery owing to its intrinsic merits, e.g., low operation costs, small volume, and low amount of chemicals and biological sludge to be treated. Finally, we summarize the challenges and prospect of these three recovery processes in the hope that the community can gain more meaningful and comprehensive insights into Rh recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.