PurposeIn this study, a therapeutic drug monitoring (TDM) of erlotinib in pancreatic cancer patients was performed over 50 weeks to reveal possible alterations in erlotinib plasma concentrations. Additionally, a physiologically based pharmacokinetic (PBPK) model was created to assess such variations in silico.MethodsPatients with advanced pancreatic cancer received a chemotherapeutic combination of 100 mg erlotinib q.d., 500–900 mg capecitabine b.d. and 5 mg/kg bevacizumab q.2wks. Samples were analyzed by HPLC and the results were compared to a PBPK model, built with the software GastroPlus™ and based on calculated and literature data.ResultsThe erlotinib plasma concentrations did not show any accumulation, but displayed a high inter-patient variability over the whole investigated period. Trough plasma concentrations ranged from 0.04 to 1.22 µg/ml after day 1 and from 0.01 to 2.4 µg/ml in the long-term assessment. 7% of the patients showed concentrations below the necessary activity threshold of 0.5 µg/ml during the first week. The impact of some co-variates on the pharmacokinetic parameters Cmax and AUC0–24 were shown in a PBPK model, including food effects, changes in body weight, protein binding or liver function and the concomitant intake of gastric acid reducing agents (ARAs).ConclusionThis study presents the approach of combining TDM and PBPK modeling for erlotinib, a drug with a high interaction potential. TDM is an important method to monitor drugs with increased inter-patient variability, additionally, the PBPK model contributed valuable insights to the interaction mechanisms involved, resulting in an effective combination from a PK perspective to ensure a safe treatment.
Before being able to develop a pharmacodynamic effect, a number of drugs have to be activated by enzymes, which are known to be potentially influenced by manifold factors, leading to a possible alteration of their activity behaviour. Based on capecitabine, we report a simple and rapid method for the estimation and comparison of the so-called ‘apparent enzyme activity' (R), not only intra- (different dose levels) but also inter-schedule, to contribute to therapeutic success. Dividing the area under the curve (AUC) of the product by the AUC of the precursor generates a factor which indicates the apparent activity of the enzyme involved in the biotransformation of a compound. Our own data as well as data from the literature was used to calculate those R levels revealing that the formation of 5′-DFUR - the immediate precursor of 5-fluorouracil - was not affected by concomitant medication within the dosing range investigated. Calculated hypothetical means of R for carboxylesterase (1.49 ± 0.66) and for cytidine deaminase (1.17 ± 0.65) were obtained. Additionally, it is important to note that the method described in this report is of general use and not limited to chemotherapeutic agents, as soon as enzymes are involved in drug activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.