This paper is concerned with entire solutions (t ∈ R) for bistable reaction-advection-diffusion equations in heterogeneous media. By using traveling curved fronts connecting a constant unstable stationary state and a stable stationary state, we proved that there exist entire solutions behaving as two traveling curved fronts coming from opposite directions, and approaching each other. Furthermore, we prove that such an entire solution is unique and Liapunov stable. The key technique is to characterize the asymptotic behavior of solutions at infinity in term of appropriate subsolutions and supersolutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.