Applying the isoconversional method to data obtained from thermogravimetric analysis (TGA) can provide vital kinetic information. In this work, the thermal decomposition and oxidation of the antidiabetic drug glimepiride is analyzed in the presence of N2 and O2. The study was done with and without metal oxide catalysts to explore their potential application in solid wastewater upgrading. The analysis was conducted using thermogravimetric analysis. The isoconversional methods of Kissinger–Akahira–Sunose and Friedman were used to estimate the effective activation energies as a function of the extent of conversion (α). Density functional calculations were used to estimate the bond dissociation energies in glimepiride. The Ea values obtained from the Friedman method and the DFT calculations indicate an initial S–N bond breaking in glimepiride. The pre-exponential factor (A) and the kinetic triplet (ΔH‡, ΔS‡, and ΔG‡) are also discussed. When glimepiride oxidation was studied in the presence of the metal oxides, the catalyst activity was found to follow the order $${\text{VO}}_{{2}} > {\text{ CuO }} > {\text{ MnO}}_{{2}} > {\text{ Al}}_{{2}} {\text{O}}_{{3}} > {\text{ TiO}}_{{2}}$$
VO
2
>
CuO
>
MnO
2
>
Al
2
O
3
>
TiO
2
.
Background
Fluorescence quenching is an interesting phenomenon with the potential to be applied across various fields. The mechanism is commonly used across analytical applications for monitoring the concentration of trace substances. Naphthalimide and its family of compounds are commonly used as fluorescent detectors. This work investigated an analytical technique through which naphthalimide-based dyes could be quantified. A commercial A/C leak detector was used as the dye and Cu2+ ions as the quencher. Experiments were also conducted to investigate the effect of temperature on quenching. To study the mechanism of quenching further, density functional theory (DFT) was used.
Results
The method detection limit obtained in this work is 1.7 × 10–6 mol/L. The results from the quenching experiments demonstrated a pattern which fit a modified Stern–Volmer (SV) model, with an R2 value of 0.9886. From the experiments on the effect of temperature, a dynamic quenching behavior was observed given the emission spectra demonstrated an inverse relationship with temperature.
Conclusions
The quenching of the commercial A/C dye by Cu2+ ions can be used to develop a rapid and sensitive detection method for metal ions such as Cu2+, and for future fabrication of chemosensors for Cu2+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.