Potable or drinking water is a daily life necessity for humans. The safety of this water is a concern in many regions around the world, since polluted waters are increasing and causing the spread of disease among populations. Continuous management and evaluation of the water which is meant for drinking is very essential and must be taken seriously. Often, the quality of water is evaluated through regular laboratory testing and analysis which can be tiresome and time consuming. On the other hand, advanced technologies using big data with the help of machine learning can have better results in terms of potability evaluation. For this reason, several studies have been conducted on predicting the quality of water and the several factors and classification that affect the prediction model. In this study, a random forest model was developed using PySpark classification to predict the potability of river water by relying on ten different features: pH, hardness, presence of solids, presence of chloramines, presence of sulfate, conductivity, organic carbon, trihalomethanes, turbidity, and finally potability. In addition, The developed model was able to predict water potability classification with a 1.0 accuracy, and 1.0 F1-score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.