This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Summary Background Diarrhoea is the second leading cause of mortality in children worldwide, but establishing the cause can be complicated by diverse diagnostic approaches and varying test characteristics. We used quantitative molecular diagnostic methods to reassess causes of diarrhoea in the Global Enteric Multicenter Study (GEMS). Methods GEMS was a study of moderate to severe diarrhoea in children younger than 5 years in Africa and Asia. We used quantitative real-time PCR (qPCR) to test for 32 enteropathogens in stool samples from cases and matched asymptomatic controls from GEMS, and compared pathogen-specific attributable incidences with those found with the original GEMS microbiological methods, including culture, EIA, and reverse-transcriptase PCR. We calculated revised pathogen-specific burdens of disease and assessed causes in individual children. Findings We analysed 5304 sample pairs. For most pathogens, incidence was greater with qPCR than with the original methods, particularly for adenovirus 40/41 (around five times), Shigella spp or enteroinvasive Escherichia coli (EIEC) and Campylobactor jejuni or C coli (around two times), and heat-stable enterotoxin-producing E coli ([ST-ETEC] around 1·5 times). The six most attributable pathogens became, in descending order, Shigella spp, rotavirus, adenovirus 40/41, ST-ETEC, Cryptosporidium spp, and Campylobacter spp. Pathogen-attributable diarrhoeal burden was 89·3% (95% CI 83·2–96·0) at the population level, compared with 51·5% (48·0–55·0) in the original GEMS analysis. The top six pathogens accounted for 77·8% (74·6–80·9) of all attributable diarrhoea. With use of model-derived quantitative cutoffs to assess individual diarrhoeal cases, 2254 (42·5%) of 5304 cases had one diarrhoea-associated pathogen detected and 2063 (38·9%) had two or more, with Shigella spp and rotavirus being the pathogens most strongly associated with diarrhoea in children with mixed infections. Interpretation A quantitative molecular diagnostic approach improved population-level and case-level characterisation of the causes of diarrhoea and indicated a high burden of disease associated with six pathogens, for which targeted treatment should be prioritised. Funding Bill & Melinda Gates Foundation.
SummaryBackgroundEnteropathogen infections in early childhood not only cause diarrhoea but contribute to poor growth. We used molecular diagnostics to assess whether particular enteropathogens were associated with linear growth across seven low-resource settings.MethodsWe used quantitative PCR to detect 29 enteropathogens in diarrhoeal and non-diarrhoeal stools collected from children in the first 2 years of life obtained during the Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) multisite cohort study. Length was measured monthly. We estimated associations between aetiology-specific diarrhoea and subclinical enteropathogen infection and quantity and attained length in 3 month intervals, at age 2 and 5 years, and used a longitudinal model to account for temporality and time-dependent confounding.FindingsAmong 1469 children who completed 2 year follow-up, 35 622 stool samples were tested and yielded valid results. Diarrhoeal episodes attributed to bacteria and parasites, but not viruses, were associated with small decreases in length after 3 months and at age 2 years. Substantial decrements in length at 2 years were associated with subclinical, non-diarrhoeal, infection with Shigella (length-for-age Z score [LAZ] reduction −0·14, 95% CI −0·27 to −0·01), enteroaggregative Escherichia coli (−0·21, −0·37 to −0·05), Campylobacter (−0·17, −0·32 to −0·01), and Giardia (−0·17, −0·30 to −0·05). Norovirus, Cryptosporidium, typical enteropathogenic E coli, and Enterocytozoon bieneusi were also associated with small decrements in LAZ. Shigella and E bieneusi were associated with the largest decreases in LAZ per log increase in quantity per g of stool (−0·13 LAZ, 95% CI −0·22 to −0·03 for Shigella; −0·14, −0·26 to −0·02 for E bieneusi). Based on these models, interventions that successfully decrease exposure to Shigella, enteroaggregative E coli, Campylobacter, and Giardia could increase mean length of children by 0·12–0·37 LAZ (0·4–1·2 cm) at the MAL-ED sites.InterpretationSubclinical infection and quantity of pathogens, particularly Shigella, enteroaggregative E coli, Campylobacter, and Giardia, had a substantial negative association with linear growth, which was sustained during the first 2 years of life, and in some cases, to 5 years. Successfully reducing exposure to certain pathogens might reduce global stunting.FundingBill & Melinda Gates Foundation.
SummaryBackgroundOptimum management of childhood diarrhoea in low-resource settings has been hampered by insufficient data on aetiology, burden, and associated clinical characteristics. We used quantitative diagnostic methods to reassess and refine estimates of diarrhoea aetiology from the Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) cohort study.MethodsWe re-analysed stool specimens from the multisite MAL-ED cohort study of children aged 0–2 years done at eight locations (Dhaka, Bangladesh; Vellore, India; Bhaktapur, Nepal; Naushero Feroze, Pakistan; Venda, South Africa; Haydom, Tanzania; Fortaleza, Brazil; and Loreto, Peru), which included active surveillance for diarrhoea and routine non-diarrhoeal stool collection. We used quantitative PCR to test for 29 enteropathogens, calculated population-level pathogen-specific attributable burdens, derived stringent quantitative cutoffs to identify aetiology for individual episodes, and created aetiology prediction scores using clinical characteristics.FindingsWe analysed 6625 diarrhoeal and 30 968 non-diarrhoeal surveillance stools from 1715 children. Overall, 64·9% of diarrhoea episodes (95% CI 62·6–71·2) could be attributed to an aetiology by quantitative PCR compared with 32·8% (30·8–38·7) using the original study microbiology. Viral diarrhoea (36·4% of overall incidence, 95% CI 33·6–39·5) was more common than bacterial (25·0%, 23·4–28·4) and parasitic diarrhoea (3·5%, 3·0–5·2). Ten pathogens accounted for 95·7% of attributable diarrhoea: Shigella (26·1 attributable episodes per 100 child-years, 95% CI 23·8–29·9), sapovirus (22·8, 18·9–27·5), rotavirus (20·7, 18·8–23·0), adenovirus 40/41 (19·0, 16·8–23·0), enterotoxigenic Escherichia coli (18·8, 16·5–23·8), norovirus (15·4, 13·5–20·1), astrovirus (15·0, 12·0–19·5), Campylobacter jejuni or C coli (12·1, 8·5–17·2), Cryptosporidium (5·8, 4·3–8·3), and typical enteropathogenic E coli (5·4, 2·8–9·3). 86·2% of the attributable incidence for Shigella was non-dysenteric. A prediction score for shigellosis was more accurate (sensitivity 50·4% [95% CI 46·7–54·1], specificity 84·0% [83·0–84·9]) than current guidelines, which recommend treatment only of bloody diarrhoea to cover Shigella (sensitivity 14·5% [95% CI 12·1–17·3], specificity 96·5% [96·0–97·0]).InterpretationQuantitative molecular diagnostics improved estimates of pathogen-specific burdens of childhood diarrhoea in the community setting. Viral causes predominated, including a substantial burden of sapovirus; however, Shigella had the highest overall burden with a high incidence in the second year of life. These data could improve the management of diarrhoea in these low-resource settings.FundingBill & Melinda Gates Foundation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.