In this paper, a pioneer partial discharge (PD) loop antenna sensor is presented and examined. It is made of a 70-turn square planar inductor with a side length of 1.8 mm, which is fabricated on top of a silicon substrate in complementary metal oxide semiconductor technology. The microsensor ability to detect corona PD is demonstrated once connected in series with a 60 dB gain amplifier. The behavior is studied at different separation distances from the line through which the PD pulses flow. At 5 cm away, a damped sinusoidal induced voltage with an amplitude of about 100 mV has been measured. The output signal spectrum is highly concentrated around a central resonance frequency of ∼5 MHz. The microsensor response is compared with those of other industrial sensors from Techimp, i.e., horn antennas and high-frequency current transformer sensors. The presented on-chip sensor can be considered a non-intrusive competing solution compared with other heavy and expensive commercial sensors due to its lightweight, compact size, and low cost. In addition, it shows an acceptable signal to noise ratio compared with other commercial electromagnetic wave-based sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.