The dependence of radiation damage to protein crystals at cryogenic temperatures upon the X-ray absorption cross-section of the crystal has been examined. Lysozyme crystals containing varying heavy-atom concentrations were irradiated and diffraction patterns were recorded as a function of the total number of incident photons. An experimental protocol and a coefficient of sensitivity to absorbed dose, proportional to the change in relative isotropic B factor, are defined that together yield a sensitive and robust measure of damage. Radiation damage per incident photon increases linearly with the absorption coefficient of the crystal, but damage per absorbed photon is the same for all heavy-atom concentrations. Similar damage per absorbed photon is observed for crystals of three proteins with different molecular sizes and solvent contents.
Vitrification of aqueous cryoprotectant mixtures is essential in cryopreservation of proteins and other biological samples. We report systematic measurements of critical cryoprotective agent (CPA) concentrations required for vitrification during plunge cooling from T=295 K to T=77 K in liquid nitrogen. Measurements on fourteen common CPAs including alcohols (glycerol, methanol, isopropanol), sugars (sucrose, xylitol, dextrose, trehalose), PEGs (ethylene glycol, PEG 200, PEG 2 000, PEG 20 000), glycols (DMSO, MPD), and salt (NaCl) were performed for volumes ranging over four orders of magnitude from ∼ nL to 20 µL, and covering the range of interest in protein crystallography. X-ray diffraction measurements on aqueous glycerol mixtures confirm that the polycrystalline-to-vitreous transition occurs within a span of less than 2% w/v in CPA concentration, and that the form of polycrystalline ice (hexagonal or cubic) depends on CPA concentration and cooling rate. For most of the studied cryoprotectants, the critical concentration decreases strongly with volume in the range from 5 µL to 0.1 µL, typically by a factor of two. By combining measurements of the critical concentration versus volume with cooling time versus volume, we obtain the function of greatest intrinsic physical interest: the critical CPA concentration versus cooling rate during flash cooling. These results provide a basis for more rational design of cryoprotective protocols, and should yield insight into the physics of glass formation in aqueous mixtures.
When samples having volumes characteristic of protein crystals are plunge cooled in liquid nitrogen or propane, most cooling occurs in the cold gas layer above the liquid. By removing this cold gas layer, cooling rates for small samples and modest plunge velocities are increased to 1.5 × 10(4) K s(-1), with increases of a factor of 100 over current best practice possible with 10 μm samples. Glycerol concentrations required to eliminate water crystallization in protein-free aqueous mixtures drop from ∼28% w/v to as low as 6% w/v. These results will allow many crystals to go from crystallization tray to liquid cryogen to X-ray beam without cryoprotectants. By reducing or eliminating the need for cryoprotectants in growth solutions, they may also simplify the search for crystallization conditions and for optimal screens. The results presented here resolve many puzzles, such as why plunge cooling in liquid nitrogen or propane has, until now, not yielded significantly better diffraction quality than gas-stream cooling.
A new tomography technique for image 3D nm‐scale material features in mm3 volumes has been developed. The technique employs a femtosecond laser for layer‐by‐layer material removal at rates 4–5 orders of magnitude faster than comparable serial sectioning techniques. The technique can be applied to a wide range of multiphase materia ls and an example of its application for imaging of TiN particles inhomogeneously dispersed in a metallic matrix is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.