In this work, 2 Eucalyptus species extracts (Eucalyptus cinerea and Eucalyptus camaldulensis) were prepared by hydrodistillation (HD) and supercritical carbon dioxide extraction (SCE) techniques. The best yields of E. cinerea and E. camaldulensis (27.5 and 8.8 g/kg, respectively) were obtained using SCE at 90 bar, 40 °C compared to HD (23 and 6.2 g/kg, respectively). Extracts were quantified by gas chromatography-flame ionization detection and identified by gas chromatography-mass spectrometry. 1,8-cineole and p-menth-1-en-8-ol were the major compounds of E. cinerea essential oil obtained by HD (64.89% and 8.15%, respectively) or by SCE (16.1% and 31.87%, respectively). Whereas, in case of E. camaldulensis, 1,8-cineole (45.71%) and p-cymene (17.14%) were the major compounds obtained by HD, and 8,14-cedranoxide (43.79%) and elemol (6.3%) by SCE. Their antioxidant activity was assessed using 2 methods: 2,2-azino-di-3-ethylbenzothialozine-sulphonic acid radical cation (ABTS(•+) ) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•) ). In the SCE extracts from both E. cinerea and E. camaldulensis, a promising radical scavenging activity was observed with ABTS(•+) , (65 and 128 mg/L, respectively). The total phenolics composition of the extracts was measured and the range was 2 to 60 mg of gallic acid equivalent/g dry plant material. The SCE method was superior to HD, regarding shorter extraction times (30 min for SCE compared with 4 h for HD), a low environmental impact, allows production of nondegraded compounds and being part of green chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.