Hydrological modelling at a catchment scale was conducted to investigate the impact of climate change and land-use change individually and in combination with the available streamflow in the Painkalac catchment using an eWater Source hydrological model. This study compares the performance of three inbuilt conceptual models within eWater Source, such as the Australian water balance model (AWBM), Sacramento and GR4J for streamflow simulation. The three-model performance was predicted by bivariate statistics (Nash–Sutcliff efficiency) and univariate (mean, standard deviation) to evaluate the efficiency of model runoff predictions. Potential evapotranspiration (PET) data, daily rainfall data and observed streamflow measured from this catchment are the major inputs to these models. These models were calibrated and validated using eight objective functions while further comparisons of these models were made using objective functions of a Nash–Sutcliffe efficiency (NSE) log daily and an NSE log daily bias penalty. The observed streamflow data were split into three sections. Two-thirds of the data were used for calibration while the remaining one-third of the data was used for validation of the model. Based on the results, it was observed that the performance of the GR4J model is more suitable for the Painkalac catchment in respect of prediction and computational efficiency compared to the Sacramento and AWBM models. Further, the impact of climate change, land-use change and combined scenarios (land-use and climate change) were evaluated using the GR4J model. The results of this study suggest that the higher climate change for the year 2065 will result in approximately 45.67% less streamflow in the reservoir. In addition, the land-use change resulted in approximately 42.26% less flow while combined land-use and higher climate change will produce 48.06% less streamflow compared to the observed flow under the existing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.