Evapotranspiration (ET) is one of the least understood components of the hydrological cycle. Its applications are varied, from agricultural, ecological and hydrological monitoring, to control of the evolution of climate change. The goal of this work was to analyze the influence that uncertainties in the estimate of land surface temperature (Ts) can cause on ET estimates by S-SEBI model in the Pampa biome area. Also, the specificities of native grassland of Pampa biome related to energy balance were analyzed. The results indicate that the daily evapotranspiration is higher when the pixel Ts is lower, which also shows the influence of land use on the variability of ET. The results demonstrated that the S-SEBI is less dependent on Ts estimation than other models reported in the literature, such as the SEBS, which not exceed 0.5 mm/day in grasslands. The evapotranspiration variability between forest and grassland were lower than expected, demonstrating that the Pampa biome have in Rio Grande do Sul the same importance that forests regarding to the processes of the hydrological cycle, since it covers 63% of the State.
Evapotranspiration (ET) is a variable of the climatic system and hydrological cycle that plays an important role in biosphere–atmosphere–hydrosphere interactions. In this paper, remote sensing-based ET estimates with the simplified surface energy balance index (S-SEBI) model using Landsat 8 data were compared with in situ lysimeter measurements for different land covers (Grass, Wheat, Barley, and Vineyard) at the Barrax site, Spain, for the period 2014–2018. Daily estimates produced superior performance than hourly estimates in all the land covers, with an average difference of 12% and 15% for daily and hourly ET estimates, respectively. Grass and Vineyard showed the best performance, with an RMSE of 0.10 mm/h and 0.09 mm/h and 1.11 mm/day and 0.63 mm/day, respectively. Thus, the S-SEBI model is able to retrieve ET from Landsat 8 data with an average RMSE for daily ET of 0.86 mm/day. Some model uncertainties were also analyzed, and we concluded that the overpass of the Landsat missions represents neither the maximum daily ET nor the average daily ET, which contributes to an increase in errors in the estimated ET. However, the S-SEBI model can be used to operationally retrieve ET from agriculture sites with good accuracy and sufficient variation between pixels, thus being a suitable option to be adopted into operational ET remote sensing programs for irrigation scheduling or other purposes.
Land surface temperature (LST) acquired from remote sensing observations is essential to monitor surface energy and water exchange processes at the land-atmosphere interface. Most LST retrieval methodologies are developed focusing on Northern hemisphere. Consequently, Southern hemisphere has a great need for investigating the performance of LST retrieval algorithms already consolidated in the literature. In this paper, we compared a Splitwindow (SW) and a Single-channel (SC) method to retrieve LST from Landsat 8 OLI/TIRS images in a dune field, Southern Brazil. To validate the results, the Atmospheric Correction Parameter Calculator (ACPC) tool and Radiative Transfer Equation (RTE) were used. Results demonstrated that both methodologies are in accordance with the RTE, despite they overestimated the LST. Analysis of variance (ANOVA) indicated that the means are not statistically significant (0.05 level). The correlations between LST retrieved and RTE were strong, producing R² of 0.984 and 0.973 for the SW and SC, respectively, and RMSE values of 1.18 and 1.6. SW also exhibited the best values of MSD (±0.983) and Bias (0.773), thus reinforcing its superior performance. SW can be applied with an accuracy of 1.18 K in Southern Brazil, without needing complex modeling or specific radiosonde.
Recent decades, particularly since the late 1970s, have witnessed a rapid retreat of glaciers in the tropical Andes. We compiled the changes in glacier surfaces along the eastern cordilleras of the tropical Andes of Peru and Bolivia since the early 1980s from the literature. Water levels from two Brazilian river basins in the Amazon basin (one (Madeira River) glacially fed by meltwater from the Andes and the other (Envira River) non‐glacially fed), were analysed for a 30‐year period between 1985−2014. Furthermore, precipitation data near these two basins were also analysed in order to understand the differential contributions of glacier melting and rainfall. Variations in the water levels from the glacially fed Madeira River showed that some years were associated with higher water levels even when the precipitation remained low during the corresponding season (May‐October). This observation was common when El Niño events occurred during the positive phase of Pacific Decadal Oscillation (PDO). Water levels in glacier‐fed Madeira River were slightly higher during the periods where El Niño and warm PDO co‐occurred. On the other hand, water levels in the Envira River were precipitation dependent; water levels were higher when the rainfall was high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.