Soluble oligomers of amyloidogenic proteins like an amyloid-β (Aβ) peptide are believed to exhibit toxic effects in neurodegenerative diseases. The structural classification of oligomers indicates two fundamentally distinct oligomers, namely, fibrillar and prefibrillar oligomers that are recognized by OC and A11 conformation-specific antibodies, respectively. Previous studies have indicated that the interaction of Aβ oligomers with the lipid membrane is one of the mechanisms by which these oligomers exert their toxic effects in Alzheimer's disease. Here, we report that the orientational ordering of liquid crystals (LC) can be used to study the membrane-induced aggregation of Aβ oligomers at nanomolar concentrations. Our results demonstrate a faster fibrillation kinetics of OCpositive fibrillar Aβ oligomers with the lipid monolayer in comparison to that of the A11positive prefibrillar Aβ oligomers. Our findings suggest a general strategy for distinguishing conformationally distinct soluble oligomers that are formed by a number of amyloidogenic proteins on lipid-decorated aqueous−LC interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.