Poorkarimi and Wiener established the existence of almost periodic solutions to a class of nonlinear hyperbolic partial differential equations with delay. Al-Islam then generalized the results of Poorkarimi and Weiner to the pseudo-almost periodic setting. In this paper, the results of Al-Islam will be extended to the space of weighted pseudo almost periodic functions, also known as Diagana Space. The class of nonlinear hyperbolic partial differential equations of Poorkarimi and Wiener represents a mathematical model for the dynamics of gas absorption. RESUMEN Poorkarimi y Wiener establecieron la existencia de soluciones casi periódicas de una clase de ecuaciones diferenciales parciales hiperbólicas no lineales con retraso. Luego, Al-Islam generalizó los resultados de Poorkarimi y Wiener al caso seudo-cuasi periódico. En este artículo los resultados de Al-Islam se extenderán al espacio de funciones seudocuasi periódicas con peso, también conocido como espacio de Diagana. La clase de ecuaciones diferenciales parciales hiperbólicas no lineales de Poorkarimi y Wiener representa un modelo matemático de la dinámica de absorción de gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.