We present NMR structural and dynamics analysis of the putative ligand binding region of human Notch-1, comprising EGF-like domains 11-13. Functional integrity of an unglycosylated, recombinant fragment was confirmed by calcium-dependent binding of tetrameric complexes to ligand-expressing cells. EGF modules 11 and 12 adopt a well-defined, rod-like orientation rigidified by calcium. The interdomain tilt is similar to that found in previously studied calcium binding EGF pairs, but the angle of twist is significantly different. This leads to an extended double-stranded beta sheet structure, spanning the two EGF modules. Based on the conservation of residues involved in interdomain hydrophobic packing, we propose this arrangement to be prototypical of a distinct class of EGF linkages. On this premise, we have constructed a model of the 36 EGF modules of the Notch extracellular domain that enables predictions to be made about the general role of calcium binding to this region.
Chordin-like cysteine-rich (CR) repeats (also referred to as von Willebrand factor type C (VWC) modules) have been identified in ϳ200 extracellular matrix proteins. These repeats, named on the basis of amino acid conservation of 10 cysteine residues, have been shown to bind members of the transforming growth factor- (TGF-) superfamily and are proposed to regulate growth factor signaling. Here we describe the intramolecular disulfide bonding, solution structure, and dynamics of a prototypical chordin-like CR repeat from procollagen IIA (CR ColIIA ), which has been previously shown to bind TGF-1 and bone morphogenetic protein-2. The CR ColIIA structure manifests a two sub-domain architecture tethered by a flexible linkage. Initial structures were calculated using RosettaNMR, a de novo prediction method, and final structure calculations were performed using CANDID within CYANA. The N-terminal region contains mainly -sheet and the C-terminal region is more irregular with the fold constrained by disulfide bonds. Mobility between the N-and C-terminal sub-domains on a fast timescale was confirmed using NMR relaxation measurements. We speculate that the mobility between the two sub-domains may decrease upon ligand binding. Structure and sequence comparisons have revealed an evolutionary relationship between the N-terminal sub-domain of the CR module and the fibronectin type 1 domain, suggesting that these domains share a common ancestry. Based on the previously reported mapping of fibronectin binding sites for vascular endothelial growth factor to regions containing fibronectin type 1 domains, we discuss the possibility that this structural homology might also have functional relevance.
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.
Background: Calmodulin is an important multifunctional molecule that regulates the activities of a large number of proteins in the cell. Calcium binding induces conformational transitions in calmodulin that make it specifically active to particular target proteins. The precise mechanisms underlying calcium binding to calmodulin are still, however, quite poorly understood.
BackgroundPsoriasis is an immune-mediated disease characterised by chronically elevated pro-inflammatory cytokine levels, leading to aberrant keratinocyte proliferation and differentiation. Although certain clinical phenotypes, such as plaque psoriasis, are well defined, it is currently unclear whether there are molecular subtypes that might impact on prognosis or treatment outcomes.ResultsWe present a pipeline for patient stratification through a comprehensive analysis of gene expression in paired lesional and non-lesional psoriatic tissue samples, compared with controls, to establish differences in RNA expression patterns across all tissue types. Ensembles of decision tree predictors were employed to cluster psoriatic samples on the basis of gene expression patterns and reveal gene expression signatures that best discriminate molecular disease subtypes. This multi-stage procedure was applied to several published psoriasis studies and a comparison of gene expression patterns across datasets was performed.ConclusionOverall, classification of psoriasis gene expression patterns revealed distinct molecular sub-groups within the clinical phenotype of plaque psoriasis. Enrichment for TGFb and ErbB signaling pathways, noted in one of the two psoriasis subgroups, suggested that this group may be more amenable to therapies targeting these pathways. Our study highlights the potential biological relevance of using ensemble decision tree predictors to determine molecular disease subtypes, in what may initially appear to be a homogenous clinical group. The R code used in this paper is available upon request.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.