Despite the broad adoption of Machine Learning models in many domains, they remain mostly black boxes. There is a pressing need to ensure Machine Learning models that are interpretable, so that designers and users can understand the reasons behind their predictions. In this work, we propose a new method called C-LORE-F to explain the decisions of fuzzy-based black box models. This new method uses some contextual information about the attributes as well as the knowledge of the fuzzy sets associated to the linguistic labels of the fuzzy attributes to provide actionable explanations. The experimental results on three datasets reveal the effectiveness of C-LORE-F when compared with the most relevant related works.
Nowadays, most decision processes rely not only on the preferences of the decision maker but also on the public opinions about the possible alternatives. The user preferences have been heavily taken into account in the multi-criteria decision making field. On the other hand, sentiment analysis is the field of natural language processing devoted to the development of systems that are capable of analysing reviews to obtain their polarity. However, there have not been many works up to now that integrate the results of this process with the analysis of the alternatives in a decision support system. SentiRank is a novel system that takes into account both the preferences of the decision maker and the public online reviews about the alternatives to be ranked. A new mechanism to integrate both aspects into the ranking process is proposed in this paper. The sentiments of the reviews with respect to different aspects are added to the decision support system as a set of additional criteria, and the ELECTRE methodology is used to rank the alternatives. The system has been implemented and tested with a restaurant data set. The experimental results confirm the appeal of adding the sentiment information from the reviews to the ranking process.
Classification systems based Machine Learning hide the logic of their internal decision processes from the users. Hence, post-hoc explanations about their predictions are often required. This paper proposes Fuzzy-LORE, a method that generates local explanations for fuzzy-based Machine Learning systems. First, it learns a local fuzzy decision tree using a set of synthetic neighbours from the input instance. Then, it extracts from the logic of the fuzzy decision tree a meaningful explanation consisting of a set of decision rules (which explain the reasons behind the decision), a set of counterfactual rules (which inform of small changes in the instance’s features that would lead to a different outcome), and finally a set of specific counterfactual examples. Our experiments on a real-world medical dataset show that Fuzzy-LORE outperforms prior approaches and methods for generating local explanations.
Understanding the reasons behind the decisions of complex intelligent systems is crucial in many domains, especially in healthcare. Local explanation models analyse a decision on a single instance, by using the responses of the system to the points in its neighbourhood to build a surrogate model. This work makes a comparative analysis of the local explanations provided by two rule-based explanation methods on RETIPROGRAM, a system based on a fuzzy random forest that analyses the health record of a diabetic person to assess his/her degree of risk of developing diabetic retinopathy. The analysed explanation methods are C-LORE-F (a variant of LORE that builds a decision tree) and DRSA (a method based on rough sets that builds a set of rules). The explored methods gave good results in several metrics, although there is room for improvement in the generation of counterfactual examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.