Sarcomere length (SL) and its variation along the myofibril strongly regulate integrated coordinated myocyte contraction. It is therefore important to obtain individual SL properties. Optical imaging by confocal fluorescence (for example, using ANEPPS) or transmitted light microscopy is often used for this purpose. However, this allows for the visualization of structures related to Z-disks only. In contrast, second-harmonic generation (SHG) microscopy visualizes A-band sarcomeric structures directly. Here, we compared averaged SL and its variability in isolated relaxed rat cardiomyocytes by imaging with ANEPPS and SHG. We found that SL variability, evaluated by several absolute and relative measures, is two times smaller using SHG vs. ANEPPS, while both optical methods give the same average (median) SL. We conclude that optical methods with similar optical spatial resolution provide valid estimations of average SL, but the use of SHG microscopy for visualization of sarcomeric A-bands may be the “gold standard” for evaluation of SL variability due to the absence of optical interference between the sarcomere center and non-sarcomeric structures. This contrasts with sarcomere edges where t-tubules may not consistently colocalize to Z-disks. The use of SHG microscopy instead of fluorescent imaging can be a prospective tool to map sarcomere variability both in vitro and in vivo conditions and to reveal its role in the functional behavior of living myocardium.
The contractility of cardiac muscle is greatly affected by preload via the Frank-Starling Mechanism (FSM). It is based on the preload-dependent activation of sarcomeres – the elementary contractile units in muscle cells. Recent findings show a natural variability in sarcomere length (SL) in resting cardiomyocytes that, moreover, is altered in an actively contracting myocyte. SL variability may contribute to the FSM but it remains unresolved whether the change in the SL variability is regulated by activation process per se or simply by changes in cell stretch, i.e. average SL. To separate the roles of activation and SL, we characterized SL variability in isolated fully relaxed rat ventricular cardiomyocytes (n = 12) subjected to a longitudinal stretch with the carbon fiber (CF) technique. Each cell was tested in three states: without CF attachment (control, no preload), with CF attachment without stretch, and with CF attachment and ~ 10% stretch of initial SL. The cells were imaged by transmitted light microscopy to retrieve and analyze individual SL and SL variability off-line by multiple quantitative measures like coefficient of variation or median absolute deviation. We found that CF attachment without stretch did not affect the extent of SL variability and averaged SL. In stretched myocytes, the averaged SL significantly increased while the SL variability remained unchanged. This result clearly indicates that the non-uniformity of individual SL is not sensitive to the average SL itself in fully relaxed myocytes. We conclude that SL variability per se does not contribute to the FSM in the heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.