Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.
We present an explicit formula for the mask of odd pointsn-ary, for any oddn⩾3, interpolating subdivision schemes. This formula provides the mask of lower and higher arity schemes. The 3-point and 5-pointa-ary schemes introduced by Lian, 2008, and (2m+1)-pointa-ary schemes introduced by, Lian, 2009, are special cases of our explicit formula. Moreover, other well-known existing odd pointn-ary schemes including the schemes introduced by Zheng et al., 2009, can easily be generated by our formula. In addition, error bounds between subdivision curves and control polygons of schemes are computed. It has been noticed that error bounds decrease when the complexity of the scheme decreases and vice versa. Also, as we increase arity of the schemes the error bounds decrease. Furthermore, we present brief comparison of total absolute curvature of subdivision schemes having different arity with different complexity. Convexity preservation property of scheme is also presented.
AbstractGraph theory assumes an imperative part in displaying and planning any synthetic structure or substance organizer. Chemical graph theory facilitates in conception of the chemical graphs for their atomic properties. The graphical structure of a chemical involves atoms termed as vertices and the line segment between two different vertices are called edges. In this manuscript, our concentration is on the chemical graph of carbon graphite and cubic carbon. Additionally, we also define a procedure and calculate the degree based topological indices namely Zagreb type indices, Balaban, Forgotten and Augmented indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.