In this article, we evaluated the variations of the brain and muscle activations while subjects are exposed to different perturbations to walking and standing balance. Since EEG and EMG signals have complex structures, we utilized the complexity-based analysis. Specifically, we analyzed the fractal dimension and sample entropy of Electroencephalogram (EEG) and Electromyogram (EMG) signals while subjects walked and stood, and received different perturbations in the form of pulling and rotation (via virtual reality). The results showed that the complexity of EEG signals was higher in walking than standing as the result of different perturbations. However, the complexity of EMG signals was higher in standing than walking as the result of different perturbations. Therefore, the alterations in the complexity of EEG and EMG signals are inversely correlated. This analysis could be extended to investigate simultaneous variations of rhythmic patterns of other physiological signals while subjects perform different activities.
Talking is the most common type of human interaction that people have in their daily life. Besides all conducted studies on the analysis of human behavior in different conditions, no study has been reported yet that analyzed how the brain activity of two persons is related during their conversation. In this research, for the first time, we investigate the relationship between brain activities of people while communicating, considering human voice as the mean of this connection. For this purpose, we employ fractal analysis in order to investigate how the complexity of electroencephalography (EEG) signals for two persons are related. The results showed that the variations of complexity of EEG signals for two persons are correlated while communicating. Statistical analysis also supported the result of analysis. Therefore, it can be stated that the brain activities of two persons are correlated during communication. Fractal analysis can be employed to analyze the correlation between other physiological signals of people while communicating.
BACKGROUND: Human facial muscles react differently to different visual stimuli. It is known that the human brain controls and regulates the activity of the muscles. OBJECTIVE: In this research, for the first time, we investigate how facial muscle reaction is related to the reaction of the human brain. METHODS: Since both electromyography (EMG) and electroencephalography (EEG) signals, as the features of muscle and brain activities, contain information, we benefited from the information theory and computed the Shannon entropy of EMG and EEG signals when subjects were exposed to different static visual stimuli with different Shannon entropies (information content). RESULTS: Based on the obtained results, the variations of the information content of the EMG signal are related to the variations of the information content of the EEG signal and the visual stimuli. Statistical analysis also supported the results indicating that the visual stimuli with greater information content have a greater effect on the variation of the information content of both EEG and EMG signals. CONCLUSION: This investigation can be further continued to analyze the relationship between facial muscle and brain reactions in case of other types of stimuli.
An important research area in physiological and sport sciences is the analysis of the variations of the muscle reaction due to changes in walking speed. In this paper, we investigated the effect of walking speed variations on leg muscle reaction by the analysis of Electromyogram (EMG) signals at different walking inclines. For this purpose, we benefited from fractal theory and sample entropy to analyze how the complexity of EMG signals changes at different walking speeds. According to the results, although fractal theory could not show a clear trend between the variations of the complexity of EMG signals and the variations of the walking speed, however, based on the results, increasing the speed of walking in the case of different inclines is mapped on to the decrement of the sample entropy of EMG signals. Therefore, sample entropy could decode the effect of walking speed on the reaction of leg muscle. This analysis method could be applied to analyze the variations of other physiological signals of humans durin walking.
BACKGROUND: The analysis of brain activity in different conditions is an important research area in neuroscience. OBJECTIVE: This paper analyzed the correlation between the brain and skin activities in rest and stimulations by information-based analysis of electroencephalogram (EEG) and galvanic skin resistance (GSR) signals. METHODS: We recorded EEG and GSR signals of eleven subjects during rest and auditory stimulations using three pieces of music that were differentiated based on their complexity. Then, we calculated the Shannon entropy of these signals to quantify their information contents. RESULTS: The results showed that music with greater complexity has a more significant effect on altering the information contents of EEG and GSR signals. We also found a strong correlation (r= 0.9682) among the variations of the information contents of EEG and GSR signals. Therefore, the activities of the skin and brain are correlated in different conditions. CONCLUSION: This analysis technique can be utilized to evaluate the correlation among the activities of various organs versus brain activity in different conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.