Alternative fuels for the transport sector are being emphasized due to energy security and environmental issues. Possible alternative fuel options need to be assessed to realize their potential to alleviate environmental burdens before policy formulations. Western Australia (WA) is dominated by private cars, accounting for around 72% vehicles with 87% of those using imported gasoline, and resulting in approximately 14% of greenhouse gas (GHG) emissions from the transport sector. There is an urgent need for WA to consider alternative transport fuels not only to reduce the environmental burden but also to avoid future energy security consequences. This study assesses the environmental life cycle assessment (ELCA) of transport fuel options suitable for WA. The study revealed that ethanol (E65), electric (EV) and plug-in electric vehicle (PHEV) options can decrease global warming potential (GWP) by 40%, 29% and 14%, respectively, when compared to gasoline. The EV and PHEV also performed better than gasoline in the fossil fuel depletion (FFD) and water consumption (WC) impact categories. Gasoline, however, demonstrated better environmental performance in all the impact categories compared to hydrogen and that was mainly due to the high electricity requirement during the production of hydrogen. The use of platinum in hydrogen fuel cells and carbon fibre in the hydrogen tank for hydrogen fuel cell vehicles (HFCV) and Li-ion battery for EVs are the most important sources of environmental impacts. The findings of the study would aid the energy planners and decision makers in carrying out a comparative environmental assessment of the locally-sourced alternative fuels for WA.
Performance and emission comparison of Karanja (pongamia pinnata), Pithraj (aphanamixis polystachya), Neem (azadira chtaindica) and Mahua (madhuca longofolia) seed oil as a potential feedstock for biodiesel production in Bangladesh
ABSTRACTThis paper investigates the production of biodiesel (BD) from karanja (Pongamia pinnata), pithraj (Aphanamixis polystachya), neem (Azadira chtaindica) and mahua (Madhuca longofolia) seed oil through acid esterification, followed by the investigation on the transesterification process and physicochemical properties of oils. This study also includes their effects on engine performance and emission on a direct ignition (DI) diesel engine. A maximum 9 of 6% by volume methyl ester (biodiesel) was obtained from mahua oil at methanol concentration of 22vol%, catalyst concentration of 0.5wt% and a temperature of 55°C and at the same condition 94%, 92% and 91% biodiesel extraction was experienced for neem, pithraj and karanja seed oil respectively. The diesel-biodiesel blend (B10) has been used during the test run and it was found that all of the fuels showed performance closer to the neat diesel. Among all the biodiesels, karanja showed better performance compared to the other three. On the other hand, high oxygen content of biodiesel causes less CO and NOx emission. It was experimentally found that mahua emits the least amount of CO and NOx which were 44.44% and 38.3% respectively compared to the neat diesel. Results indicate that these oils are potential biodiesel feedstock and can be used as an alternative to the diesel fuel in the near future. Desirable engine performance and tail pipe emissions are also observed during the experimental investigation.
Environmental obligation, fuel security, and human health issues have fuelled the search for locally produced sustainable transport fuels as an alternative to liquid petroleum. This study evaluates the sustainability performance of various alternative energy sources, namely, ethanol, electricity, electricity-gasoline hybrid, and hydrogen, for Western Australian road transport using a life cycle sustainability assessment (LCSA) framework. The framework employs 11 triple bottom line (TBL) sustainability indicators and uses threshold values for benchmarking sustainability practices. A number of improvement strategies were devised based on the hotspots once the alternative energy sources failed to meet the sustainability threshold for the determined indicators. The proposed framework effectively addresses the issue of interdependencies between the three pillars of sustainability, which was an inherent weakness of previous frameworks. The results show that the environment-friendly and socially sustainable energy options, namely, ethanol-gasoline blend E55, electricity, electricity-E10 hybrid, and hydrogen, would need around 0.02, 0.14, 0.10, and 0.71 AUD/VKT of financial support, respectively, to be comparable to gasoline. Among the four assessed options, hydrogen shows the best performance for the environmental and social bottom line when renewable electricity is employed for hydrogen production. The economic sustainability of hydrogen fuel is, however, uncertain at this stage due to the high cost of hydrogen fuel cell vehicles (HFCVs). The robustness of the proposed framework warrants its application in a wide range of alternative fuel assessment scenarios locally as well as globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.