Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology characterized by the development of subpleural foci of myofibroblasts that contribute to the exuberant fibrosis noted in the pulmonary parenchyma. Pleural mesothelial cells (PMC) are metabolically dynamic cells that cover the lung and chest wall as a monolayer and are in intimate proximity to the underlying lung parenchyma. The precise role of PMC in the pathogenesis of pulmonary parenchymal fibrosis remains to be identified. Transforming growth factor (TGF)-beta1, a cytokine known for its capacity to induce proliferative and transformative changes in lung cells, is found in significantly higher quantities in the lungs of patients with IPF. High levels of TGF-beta1 in the subpleural milieu may play a key role in the transition of normal PMC to myofibroblasts. Here we demonstrate that PMC activated by TGF-beta1 undergo epithelial-mesenchymal transition (EMT) and respond with haptotactic migration to a gradient of TGF-beta1 and that the transition of PMC to myofibroblasts is dependent on smad-2 signaling. The EMT of PMC was marked by upregulation of alpha-smooth muscle actin (alpha-SMA), fibroblast specific protein-1 (FSP-1), and collagen type I expression. Cytokeratin-8 and E-cadherin expression decreased whereas vimentin remained unchanged over time in transforming PMC. Knockdown of smad-2 gene by silencing small interfering RNA significantly suppressed the transition of PMC to myofibroblasts and significantly inhibited the PMC haptotaxis. We conclude that PMC undergo EMT when exposed to TGF-beta1, involving smad-2 signaling, and PMC may be a possible source of myofibroblasts in IPF.
Idiopathic pulmonary fibrosis (IPF) is characterised by myofibroblast proliferation leading to architectural destruction. Neither the origin nor the continued proliferation of myofibroblasts is well understood.Explanted human IPF lungs were stained by immunohistochemistry for calretinin, a marker of pleural mesothelial cells (PMCs). Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) lungs acted as controls. The number of PMCs per 100 nucleated cells and per photomicrograph was estimated along with the Ashcroft score of fibrosis. Mouse PMCs expressing green fluorescent protein (GFP) or labelled with nanoparticles were injected into the pleural space of mice given intranasal transforming growth factor (TGF)-b1. Mouse lungs were lavaged and examined for the presence of GFP, smooth muscle a-actin (a-SMA) and calretinin.Calretinin-positive PMCs were found throughout IPF lungs, but not in COPD or CF lungs. The number of PMCs correlated with the Ashcroft score. In mice, nanoparticle-laden PMCs were recoverable by bronchoalveolar lavage, depending on the TGF-b1 dose. Fluorescent staining showed a-SMA expression in GFP-expressing PMCs, with co-localisation of GFP and a-SMA.PMCs can traffic through the lung and show myofibroblast phenotypic markers. PMCs are present in IPF lungs, and their number correlates with IPF severity. Since IPF presumably begins subpleurally, PMCs could play a pathogenetic role via mesothelial-mesenchymal transition.
Malignant pleural mesotheliomas (MPM) are most often surgically unresectable, and they respond poorly to current chemotherapy and radiation therapy. Between 23 and 64% of malignant pleural mesothelioma have somatic inactivating mutations in the BAP1 gene. BAP1 is a homologous recombination (HR) DNA repair component found in the BRCA1/BARD1 complex. Similar to BRCA1/2 deficient cancers, mutation in the BAP1 gene leads to a deficient HR pathway and increases the reliance on other DNA repair pathways. We hypothesized that BAP1-mutant MPM would require PARP1 for survival, similar to the BRCA1/2 mutant breast and ovarian cancers. Therefore, we used the clinical PARP1 inhibitors niraparib and olaparib to assess whether they could induce synthetic lethality in MPM. Surprisingly, we found that all MPM cell lines examined, regardless of BAP1 status, were addicted to PARP1-mediated DNA repair for survival. We found that niraparib and olaparib exposure markedly decreased clonal survival in multiple MPM cell lines, with and without BAP1 mutations. This clonal cell death may be due to the extensive replication fork collapse and genomic instability that PARP1 inhibition induces in MPM cells. The requirement of MPM cells for PARP1 suggests that they may generally arise from defects in HR DNA repair. More importantly, these data demonstrate that the PARP1 inhibitors could be effective in the treatment of MPM, for which little effective therapy exists.Electronic supplementary materialThe online version of this article (doi:10.1007/s00280-017-3401-y) contains supplementary material, which is available to authorized users.
Migration of polymorphonuclear neutrophils (PMNL) from the vascular compartment into the pleural space occurs rapidly during the development of parapneumonic effusions. This study investigated the polarized secretion of interleukin (IL)-8 in activated pleural mesothelial cells (PMC) and the migration of PMNL across resting, activated PMC monolayers. Results show that PMC produce IL-8 in a polar manner. When PMC were stimulated with Staphylococcus aureus or IL-1beta at the basal or at the apical surface, significantly (P< .05) more IL-8 was released toward the apical surface. This polarized production of IL-8 was confirmed by in situ hybridization. PMNL migration was higher from the basilar to apical than from the apical to basilar surface of PMC. Neutralizing antibodies against IL-8 and intercellular adhesion molecule (ICAM)-1 significantly (P< .001) blocked PMNL migration across activated monolayers. Thus, during pleural inflammation, PMC regulate the influx of PMNL into the pleural space by polar production of IL-8 and expression of ICAM-1.
Pneumonia remains one of the most common infectious causes of mortality. Patients with pneumonia develop parapneumonic effusions with a high neutrophil count as well as high protein concentrations. We hypothesized that pulmonary parenchymal bacterial infection causes a permeability change in the pleural mesothelium by inducing the production of vascular endothelial growth factor (VEGF). Complicated parapneumonic pleural effusions (empyema) have a 19-fold higher VEGF level than pleural fluids secondary to congestive heart failure and a 4-fold higher level than pleural fluids secondary to uncomplicated parapneumonic effusions. We also analyzed the influence of live Staphylococcus aureus on mesothelial barrier function using a model of confluent mesothelial monolayers. There was a significant drop in electrical resistance across S. aureus-infected pleural mesothelial cell (PMC) monolayers. Recombinant VEGF also decreases PMC electrical resistance. Neutralizing antibodies to VEGF significantly inhibited the drop in PMC electrical resistance caused by S. aureus. S. aureus infection also caused a significant increase in protein leak across confluent mesothelial monolayers. Our results suggest that bacterial pathogens induce VEGF release in mesothelial cells and alter mesothelial permeability, leading to protein exudation in empyema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.